Vectors Review

Date: _____ Per: ____

A vector **v** has the given initial and terminal point. Find the position vector.

- 1. Initial point (3,7) Terminal point (3,-2)
- 2. Initial point (-2,1) Terminal point (7,6)
- 3. Initial point (4,6) Terminal point (7,2)
- 4. Initial point (1,8) Terminal point (3,-7)

Calculate the magnitude and direction of the given vector.

- 5. \boldsymbol{u} with initial point (1,8) and terminal point (-2,12)
- 6. Complex vector \mathbf{v} with $\mathbf{v} = -2 + 7\mathbf{i}$
- 7. $5\mathbf{v}$ with $\mathbf{v} = \langle -1, -4 \rangle$
- 8. \boldsymbol{w} given $\boldsymbol{u}=3\boldsymbol{i}+2\boldsymbol{j}$, $\boldsymbol{v}=\boldsymbol{i}-\boldsymbol{j}$, and $\boldsymbol{w}=3\boldsymbol{u}-2\boldsymbol{v}$

Given vectors \mathbf{u} and \mathbf{v} , find $\mathbf{u} + \mathbf{v}$, and $\mathbf{u} - \mathbf{v}$.

9.
$$u = \langle 4, 2 \rangle$$
 and $v = \langle 7, 1 \rangle$

$$10.\boldsymbol{u} = \langle -5, -2 \rangle$$
 and $\boldsymbol{v} = \langle 1, -3 \rangle$

11.
$$u = i + j$$
 and $v = 2i - 3j$

12.
$$u = 2i - j$$
 and $v = -i + j$

Determine which pairs of vectors are orthogonal.

$$13.v = -2i$$
 and $w = 5j$

14.
$$v = -2i + j$$
 and $w = i + 2j$

15.
$$v = i + j$$
 and $w = \frac{1}{2}i + \frac{1}{2}j$

16.
$$v = 2i - 3j$$
 and $w = i + j$

Convert the complex number to either rectangular or polar form (whichever is not given).

17.
$$5 - 3i$$

18.
$$4\cos 234^{\circ} + 4i\sin 234^{\circ}$$

19.
$$2i - 6$$

20.
$$7(\cos 65^{\circ} + i \sin 65^{\circ})$$

- 21. Find the angle between the vectors u = 4i 5j and v = 2i + 9j.
- 22. Find the component form of the vector v with ||v|| = 6, in the same direction as

$$u = \langle -2, 7 \rangle$$
.

- 23. A jet is flying with an air speed of 480 miles per hour at a bearing of N82°E (8°). Because of the wind, the ground speed of the plane is 518 miles per hour at a bearing of N79°E (11°). What are the speed and direction of the wind?
- 24. An airplane is traveling due west with a speed of 500 miles per hour. The wind blows at 65 miles per hour at an angle of S20°W. What is the resultant speed and direction of the airplane's flight?

Answers to Review

1.
$$(0, -9)$$
; $v = -9j$

2.
$$(9, 5)$$
; $v = 9i + 5j$

3.
$$(3,-4)$$
; $v = 3i - 4j$

4.
$$(2,-15)$$
; $v = 2i - 15j$

5.
$$\|\mathbf{v}\| = 5, \theta = 126.86^{\circ}$$

6.
$$\|\boldsymbol{v}\| = 7.28, \theta = 105.95^{\circ}$$

7.
$$\|\mathbf{v}\| = 20.62, \theta = 256^{\circ}$$

8.
$$\|\mathbf{v}\| = 10.63, \theta = 48.8^{\circ}$$

9.
$$(11,3)$$
; $(-3,1)$

10.
$$\langle -4, -5 \rangle$$
; $\langle -6, 1 \rangle$

11.
$$3i - 2j$$
; $-i + 4j$

12.
$$i$$
; $3i - 2j$

13. Yes, orthogonal

14. Yes, orthogonal

15. No, parallel

16. No, neither

17. $\sqrt{34}$ cis 329.04°

18. -2.35 - 3.24i

19. $2\sqrt{10}$ cis 161.57°

20.2.96 + 6.34i

21. 128.81°

22. $< 6 \cos(105.95)$, $6 \sin(105.95) >$ = < -1.65, 5.77 >

23. 46.10 mph, 44.03°

24. Speed: 525.79 mph

Direction: 186.67° or W6.67°S