Algebra 1 Unit 2 Part 2

Solving Quadratic Equations

Monday	Tuesday	Wednesday	Thursday	Friday
February 22 ${ }^{\text {nd }}$	February $23{ }^{\text {rd }}$	February 24 ${ }^{\text {th }}$	February $25^{\text {th }}$	February $26^{\text {th }}$
Factoring	Unit 2 Part 1 Test Opens	Unit 2 Part 1 Test due at Midnight	Solving Quadratics by Factoring	Solving Quadratics by Factoring
March ${ }^{\text {st }}$	March 2 ${ }^{\text {nd }}$	March 3rd	March 4 ${ }^{\text {th }}$	March 5 ${ }^{\text {th }}$
Simplifying Radicals Solving Quadratics by Square Roots	Solving Quadratics by Square Roots Unit 2 Part 2 Quiz Opens	Unit 2 Part 2 Quiz due at Midnight	Solving Quadratics by Completing the Square	Solving Quadratics by Completing the Square The Discriminant
March $8^{\text {th }}$	March 9th	March $10^{\text {th }}$	March $11^{\text {th }}$	March $12^{\text {th }}$
The Discriminant Solving Quadratics by the Quadratic Formula	Solving Quadratics by the Quadratic Formula Unit 2 Part 2 Test Opens	Unit 2 Part 2 Test due at Midnight		

Solving Quadratic Equations by Factoring
To solve a quadratic equation by factoring, you must...
(1)
(2)
(3)
(4)
${ }^{* *}$ Note: the solutions to quadratic equations are known as solutions, zeroes, roots, and x-intercepts**

Examples:

1) $x^{2}+2 x-3=0$
2) $x^{2}-11 x=-30$
3) $3 x^{2}-75=0$
4) $15 x^{2}-8 x+1=0$
5) $2 x^{2}+4 x-20=10$
6) $9 x^{2}-4=0$
7) $4 x^{2}+10 x+9=-3 x$
8) $16 x^{2}-24 x=-9$

Solving Quadratics by Factoring - Matching WS

$\mathrm{A}:\{2,0\}$	$\mathrm{B}:\{-1,4\}$	$\mathrm{C}:\left\{\frac{5}{2},-3\right\}$	$\mathrm{D}:\{-3,-4\}$
$\mathrm{E}:\{2,3\}$	$\mathrm{F}:\left\{-\frac{4}{3}, 1\right\}$	$\mathrm{G}:\left\{\frac{3}{5},-5\right\}$	$\mathrm{H}:\left\{\frac{1}{3},-1\right\}$

1) $4 n^{2}-8 n=0$
2) $x^{2}+7 x+12=0$
3) $10 a^{2}+5 a-75=0$
4) $3 k^{2}+2 k-1=0$
5) $20 a^{2}+88 a-62=-2$
6) $2 x^{2}-6 x-4=4$
7) $4 n^{2}-20 n+25=1$
8) $4 p^{2}-4=-p+p^{2}$

Simplifying Radicals

Perfect Squares	1	4	9	16	25	36	49	64	81	100	121	144
	$\sqrt{1}$	$\sqrt{4}$	$\sqrt{9}$	$\sqrt{16}$	$\sqrt{25}$	$\sqrt{36}$	$\sqrt{49}$	$\sqrt{64}$	$\sqrt{81}$	$\sqrt{100}$	$\sqrt{121}$	$\sqrt{144}$
Square Root	1	2	3	4	5	6	7	8	9	10	11	12

A radical is any number with a radical symbol $(\sqrt{ })$.
A radical expression is an expression (coefficients and/or variables) with radical.

When are Radical Expressions in Simplest Form?

A \qquad expression is in simplest form if:

- No perfect square factors other than 1 are in the radicand Example: $\sqrt{11}$
- What if there is a perfect square factor in the radicand? According to the Product Properties of Radicals, we can split the radical into the product of two radicals. Then we can evaluate the square root of the perfect square factor. It becomes the coefficient of the radical.
Example: $\sqrt{20}$

Simplifying Radicals

Guided Example: Simplify $\sqrt{108}$.

Step 1: Begin by finding perfect square factors of the radicand.	
Step 2: Split the radical into the product of two radicals. *Look for the biggest perfect square factor of the radicand*	
Step 3: Evaluate the square root of the perfect square factor, and place it in the front of the radical as a coefficient. Leave the remaining factor inside the radical.	
Step 4: Repeat steps 1-4 until radical cannot be simplified further.	

Practice:

a. $\sqrt{32}$
b. $\sqrt{48}$
C. $\sqrt{28}$
d. $\sqrt{14}$
e. $3 \sqrt{96}$
f. $4 \sqrt{20}$
g. $6 \sqrt{120}$
h. $2 \sqrt{36}$
i. $\sqrt{24}$

Perfect Square	1	4	9	16	25	36	49	64	81	100	121	144	169
$\sqrt{ }$	1	2	3	4	5	6	7	8	9	10	11	12	13

Simplify each radical expression, if possible. Find the correct answer below. Write the letters in the boxes below to answer the riddle.

1) $\sqrt{100}$	2) $\sqrt{24}$	3) $\sqrt{18}$	4) $\sqrt{4}$
5) $\sqrt{7}$	6) $\sqrt{98}$	7) $\sqrt{16}$	8) $\sqrt{8}$
9) $\sqrt{20}$	10) $\sqrt{63}$	11) $\sqrt{32}$	12) $\sqrt{12}$
13) $\sqrt{121}$	14) $\sqrt{45}$	15) $\sqrt{48}$	16) $\sqrt{10}$
17) $\sqrt{50}$	18) $\sqrt{72}$	19) $\sqrt{300}$	20) $\sqrt{75}$

Answer Choices:

$3 \sqrt{10}$	$7 \sqrt{2}$	$2 \sqrt{6}$	$\sqrt{4}$	9	$3 \sqrt{7}$	$5 \sqrt{3}$	$4 \sqrt{3}$	$4 \sqrt{6}$	$2 \sqrt{5}$
$?$	A	A	$!$	R	E	$!$	S	S	V
2	$\sqrt{7}$	$2 \sqrt{7}$	$\sqrt{3}$	10	$16 \sqrt{2}$	$2 \sqrt{2}$	6	12	$9 \sqrt{8}$
W	H	O	T	E	J	E	V	R	O
$3 \sqrt{5}$	$3 \sqrt{2}$	$8 \sqrt{3}$	$4 \sqrt{2}$	$9 \sqrt{2}$	3	$\sqrt{12}$	$6 \sqrt{2}$	1	$\sqrt{10}$
G	T	E	R	Q	U	W	E	C	T
7	25	11	$8 \sqrt{2}$	$24 \sqrt{2}$	$2 \sqrt{3}$	$5 \sqrt{2}$	8	$10 \sqrt{3}$	4
P	R	U	W	H	B	H	A	M	T

Why are frogs so happy?

THEY

Solving Quadratics by Square Roots

Without using a calculator, see how many of the first 12 perfect squares you can name.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Simplifying Non-Perfect Squares: Find a perfect square that goes into the radicand, break into 2 radicals, and simply. Repeat if possible.
$\sqrt{12}$
$\sqrt{20}$
$\sqrt{30}$
$\sqrt{75}$

Taking the Square Root: Using your calculator, calculate the following.
$(-8)^{2}=$
$(8)^{2}=$
$(5)^{2}=$
$(-5)^{2}=$

Without using your calculator, take the square root of the following integers. 16 49100

12
1

We are going to use this information to help us solve quadratic equations by taking the square root.

When solving by square roots, you want to:
(1) \qquad
\qquad
(2) \qquad
\qquad
(3) \qquad
(4) \qquad

Steps: Isolate whatever is being squared, square root both sides (include +/- and break into two equations), simplify the radicals if possible, solve for x

1) $3 x^{2}+7=55$
2) $(x-7)^{2}=81$
3) $x^{2}-16=0$
4) $-3 x^{2}-6=-x^{2}-12$
5) $(x+1)^{2}=50$
6) $4 x^{2}-9=0$
7) $-7(x-10)^{2}-6=-258$
8) $(x+3)^{2}-20=7$

Solving Quadratics by Square Roots - Practice

 For each of the following questions, find the roots.1) $x^{2}=25$
2) $2 x^{2}=98$
3) $x^{2}-1=0$
4) $9 x^{2}-16=0$
5) $x^{2}+9=25$
6) $4(x-2)^{2}=100$
7) $(x-2)^{2}+9=25$
8) $(4 x-2)^{2}+9=25$

Solving Quadratics by Completing the Square (using Algebra tiles)

Algebra tiles are square and rectangular tiles that we use to represent numbers and variables. There are 3 types of tiles...

x^{2} Tile
Area $=x \cdot x=x^{2}$ units

x Tile
Area $=1 \cdot x=x$ units

Algebra tiles are often double sided with a green side that represents positive values and red side that represents negative values.

We are going to use the diagram below to model quadratic equations.

$$
y=x^{2}+6 x+9
$$

$$
y=x^{2}-4 x+4
$$

Create a partial square with algebra tiles to represent $x^{2}+2 x+$ \qquad

a) How many unit tiles do you need to complete the square?
b) What are the dimensions of the completed square?
c) Fill in the blanks below to make the following true:

$$
x^{2}+2 x+\ldots=(x+\ldots \ldots)^{2}
$$

Create a partial square with algebra tiles to represent $x^{2}+8 x+$ \qquad

a) How many unit tiles do you need to complete the square?
b) What are the dimensions of the completed square?
c) Fill in the blanks below to make the following true:

$$
x^{2}+8 x+\ldots=(x+\ldots)^{2}
$$

Create a partial square with algebra tiles to represent $x^{2}-6 x+$ \qquad

Using Algebra Tiles to Solve Quadratics

Given the equation $x^{2}+2 x+3=0 \ldots$
a) How many x^{2} tiles do we have?
b) How many x tiles do we have?
c) How many unit tiles do we have?
d) Sketch the square. (You may have extra unit tiles or you may need to borrow unit tiles)
e) Length of the square:
f) Area of the square:
g) Unit tiles left over (+/-) or borrowed (-)

h) New equation:
i) To solve, replace y with 0 and solve.

Given the equation $x^{2}+4 x+1=0 \ldots$
a) How many x^{2} tiles do we have?
b) How many x tiles do we have?
c) How many unit tiles do we have?
d) Sketch the square. (You may have extra unit tiles or you may need to borrow unit tiles)
e) Length of the square:
f) Area of the square:
g) Unit tiles left over (+/-) or borrowed (-)
h) New equation:

i) To solve, replace y with 0 and solve.

Given the equation $x^{2}+6 x+4=-6 \ldots$
a) Get the equation equal to zero.
b) How many x^{2} tiles do we have?
c) How many x tiles do we have?
d) How many unit tiles do we have?
e) Sketch the square. (You may have extra unit tiles or you may need to borrow unit tiles)
f) Length of the square:
g) Area of the square:

h) Unit tiles left over (+/-) or borrowed (-) i) New equation:
j) To solve, replace y with 0 and solve.
** If the equation is originally set equal to a number other than 0 , get it equal to 0 first ${ }^{* *}$ If a is not 1 , you will need to factor out a first **

1) $x^{2}+12 x+30=2$

2) $x^{2}+8 x-20=0$

3) $x^{2}-6 x+8=1$

Completing the Square Practice

Complete the square to find the roots of the following functions.

1) $x^{2}+12 x+32=0$

2) $x^{2}+10 x+8=0$

draw your own diagram
3) $x^{2}-6 x-10=6$
4) $x^{2}-9=4 x$

Quadratic Formula and the Discriminant

Remember, solutions to quadratic functions are also known as zeroes, roots, and x-intercepts.

How many solutions does each graph below have? (think about the sentence above)

The Discriminant

The discriminant is part of the quadratic formula. When you simplify the discriminant, it becomes a number that will tell you the number of solutions a quadratic function has.
Before finding the discriminant, you must make sure your equation is equal to zero discriminant: $\boldsymbol{b}^{\mathbf{2}} \mathbf{- 4 a c}$

If the discriminant is negative, there is/are \qquad If the discriminant is zero, there is/are \qquad
If the discriminant is positive, there is/are \qquad

For each equation below, determine the number of solutions.

1) $x^{2}+6 x+4=0$
2) $-3 x^{2}+17 x-2=3$
3) $3 x+7=-5 x^{2}-4$
4) $x^{2}-5 x-34=0$
5) $2 x^{2}-3 x+2=0$
6) $9 x^{2}+24 x+10=-6$

The Quadratic Formula

You can use the quadratic formula anytime that a quadratic equation is in general form. The quadratic formula is one method that will always work when solving quadratics.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Example: $4 x^{2}-13 x+3=0$

	Steps
1) Find a, b, and c **make sure equation is set equal to zero**	
2) Plug a, b, and c into the quadratic formula	
3) Simplify the discriminant and denominator	
4) Separate into two equations and simplify	

Practice:

1) $x^{2}+11 x+10=0$

Discriminant: \qquad which means \qquad
Root(s): \qquad
2) $7 x^{2}+8 x+1=0$

Discriminant: \qquad
\# of solutions: \qquad
Root(s): \qquad
4) $9 x^{2}+6 x+1=0$

Discriminant: \qquad
\# of solutions: \qquad
Root(s):
3) $-3 x^{2}+2 x=-8$

Discriminant: \qquad
\# of solutions: \qquad
Root(s): \qquad
5) $y=9 x^{2}+14 x+3$

Discriminant: \qquad
\# of solutions: \qquad
Root(s):

What is a Metaphor?

Solve each equation below using the quadratic formula. Cross out the box that contains the solution set. When you finish, print the letters from the remaining boxes in the spaces at the bottom of the page.

1) $x^{2}+4 x+3=0$
2) $x^{2}-7 x+10=0$
3) $x^{2}+5 x+6=0$
4) $x^{2}-3 x-4=0$
5) $y^{2}+2 y-8=0$
6) $x^{2}-5 x+2=0$
7) $d^{2}+3 d-7=0$
8) $2 x^{2}-5 x+2=0$
9) $2 n^{2}-3 n-5=0$
10) $3 x^{2}+5 x+1=0$
11) $3 y^{2}-2 y-8=0$

$\begin{aligned} & \text { ONE } \\ & \{5,2\} \end{aligned}$	ATH $\left\{\frac{-5 \pm \sqrt{13}}{6}\right\}$	$\begin{gathered} \text { TOK } \\ \left\{-4, \frac{1}{2}\right\} \end{gathered}$	$\begin{gathered} \text { ING } \\ \left\{\frac{5}{2},-1\right\} \end{gathered}$	$\begin{gathered} \text { ICK } \\ \left\{\frac{-3 \pm \sqrt{37}}{2}\right\} \end{gathered}$
$\begin{gathered} \mathrm{ASL} \\ \{-2,-3\} \end{gathered}$	$\begin{gathered} \text { EEP } \\ \left\{\frac{3 \pm \sqrt{15}}{2}\right\} \end{gathered}$	$\begin{gathered} \text { MET } \\ \{2,-4\} \end{gathered}$	$\begin{gathered} \text { BOW } \\ \left\{2,-\frac{4}{3}\right\} \end{gathered}$	$\begin{gathered} \text { COW } \\ \left\{\frac{2 \pm \sqrt{30}}{6}\right\} \end{gathered}$
$\begin{aligned} & \mathrm{BOY} \\ & \left\{2, \frac{1}{2}\right\} \end{aligned}$	$\begin{gathered} \mathrm{RIT} \\ \{-1,-3\} \end{gathered}$	$\begin{gathered} \mathrm{SIN} \\ \{6,1\} \end{gathered}$	$\begin{gathered} \text { GLE } \\ \left\{\frac{5 \pm \sqrt{17}}{2}\right\} \end{gathered}$	$\begin{gathered} \text { ING } \\ \{4,-1\} \end{gathered}$

Remaining Letters:

Picking the "Best" Method to Solve Quadratic Equations

Method	Page	When You Can Use It	Advantages	Disadvantages
Factoring		whenever the quadratic is factorable	- good method to try first - straightforward (if the quadratic is factorable)	- not all quadratics are factorable
Square Roots	whenever the b term is 0x	- quick	- cannot use when the b term is anything but Ox	
Completing the Square	when a = 1 and b is even	- will always work if a = 1 and b is even	- longer process - multiple steps	
Quadratic Formula	always works	- always works	- other methods may be "easier" or quicker	

Solve the following quadratic equation by the methods listed.

$$
x^{2}-8 x+10=-5
$$

Solving Quadratic Equations - Matching Worksheet

Solve the following by any method. Then, match the equation to the answer(s) on the right.

1) $x^{2}-16 x+63=0$	*one answer will be used twice*
2) $x^{2}+6 x-2=0$	a) $x=3, x=-3$
3) $5 x^{2}=45$	b) $x=-3 \pm \sqrt{11}$
4) $x^{2}-2 x-14=-4$	c) $x=2, x=-\frac{5}{2}$
5) $4 x^{2}+20 x-20=4$	d) no real solution
6) $(x+3)^{2}+2=-10$	e) $x=1 \pm \sqrt{11}$
7) $2 x^{2}-3 x=0$	f) $x=-2, x=6$
8) $x^{2}-4 x-18=-x$	g) $x= \pm 5$
9) $x^{2}+14 x-30=8$	h) $x=7, x=9$
10) $3 x^{2}-2 x=8$	i) $x=0, x=\frac{3}{2}$
11) $x^{2}-9=0$	j) $x=3 \pm 2 \sqrt{2}$
12) $5 x^{2}+9=134$	k) $x=-3, x=6$
13) $x^{2}-8 x+3=0$	I) $x=4 \pm \sqrt{13}$
14) $2 x^{2}+x-10=0$	m) $x=5 \pm \sqrt{33}$
15) $2(x-3)^{2}-12=4$	n) $x=-3, x=11$
16) $2 x^{2}+x-10=5$	O) $x=1, x=5$
17) $x^{2}-8 x-33=0$	p) $x=2, x=-\frac{4}{3}$
18) $x^{2}-4 x-12=0$	q) $x=-7 \pm \sqrt{87}$
19) $x^{2}-10 x-8=0$	r) $x=-3, x=\frac{5}{2}$
20) $2(x-3)^{2}=8$	s) $x=-6, x=1$

