Unit 1 - Part 2 Linear Functions

Monday	Tuesday	Wednesday	Thursday	Friday
Jan. 18 ${ }^{\text {th }}$	Jan. 19th	Jan. 20 ${ }^{\text {th }}$	Jan. $21^{\text {st }}$	Jan. 22 ${ }^{\text {nd }}$
No School	Unit 1 Part 1 Test	Unit 1 Part 1 Test	Graphing Linear Functions	Characteristics of Linear Functions
Jan. $25^{\text {th }}$	Jan. $26^{\text {th }}$	Jan. $27^{\text {th }}$	Jan. $28^{\text {th }}$	Jan. 29th
Function Notation	PSAT Day - No Class	Arithmetic Sequences	Review Quiz due at midnight	Solving Systems by Graphing
Feb. $1^{\text {st }}$	Feb. ${ }^{\text {nd }}$	Feb. 3rd	Feb. $4^{\text {th }}$	Feb. $5^{\text {th }}$
Solving Systems by Substitution	Solving Systems by Elimination Quiz	Quiz due at midnight	Systems of Equations Word Problems	Graphing Systems of Inequalities
Feb. $8^{\text {th }}$	Feb. $9^{\text {th }}$	Feb. $10^{\text {th }}$	Feb. $11^{\text {th }}$	Feb. $12^{\text {th }}$
Graphing Systems of Inequalities	Review Tes \dagger	Test due at midnight	Factoring by GCF	Factoring

Graphing Linear Functions
In order to graph a linear function, you must know two things: the \qquad and the \qquad .

Y-Intercept

The y-intercept is the point on the graph where the \qquad crosses the \qquad . The y-intercept is represented by the variable \qquad and can be found at the point
\qquad .

Slope

The slope is the constant rate of change of the rise to the run.
The slope is represented by the variable \qquad . If the slope is given to you as a whole number, you can make it a fraction by putting the number over \qquad .

4 Types of Slope

Positive Slope

Examples: $\frac{3}{2}$ or 4

Going up a hill

Zero Slope

Y-values are the same
Going in a
straight line (No Vertical Change)

Negative Slope

Examples:

$$
-\frac{1}{2} \text { or }-4
$$

Going down a hill

Undefined Slope

X -values are the same
Falling off a cliff
(No Horizontal Change)

Slope of a Line

The rise is the difference in the y-values of two points on a line.
The run is the difference in the x-values of two points on a line.
The slope of a line is the ratio of rise to run for any two points on the line.

$$
\text { slope }=\frac{\text { rise }}{\text { run }}=\frac{\text { change in } y}{\text { change in } x}
$$

(Remember that y is the dependent variable and x is the independent variable.)

Slope-Intercept Form: $\quad y=m x+b$

Step 1: Identify the y-intercept (b) and plot the point $(0, b)$.
Step 2: Use the slope (m) to find a second point: $m=\frac{r i s e}{r u n}$. (Remember to make whole numbers into fractions). You can do this several times.

Step 3: Connect the points.
Example: $y=\frac{4}{3} x+1 \quad$ You Try: $y=3 x-5$
$b=1$
y - int: $(0,1)$
$m=\frac{4}{3}$
slope $=\frac{\text { rise } 4}{\text { run } 3}$

More Practice

$$
y=-\frac{2}{3} x+4
$$

Graphing in Slope-Intercept Form Practice

1) $y=-6 x+5$

2) $y=x-2$

3) $y=\frac{3}{5} x$

4) $y=\frac{6}{5} x+4$

5) $y=-\frac{3}{2} x-4$

6) $y=-x-2$

7) $x=-2$

8) $y=2$

9) $y=\frac{2}{5} x-3$

10) $y=-\frac{1}{5} x-4$

11) $y=5 x$

12) $x=3$

Graphing in Standard Form

Standard Form: $\boldsymbol{A x}+\boldsymbol{B y}=\boldsymbol{C}$

Step 1: Convert from standard form to slope-intercept form (solve for y)
Step 2: Follow the same steps from graphing in slope-intercept form (Da. 3)
Example: $\mathbf{2 x + 6 y = 1 2}$

$$
\begin{aligned}
& 2 x+6 y=12 \\
& -2 x-2 x \\
& 6 y=-2 x+12 \\
& \frac{6 y}{6}=\frac{-2 x+12}{6} \\
& y=-\frac{2}{6} x+\frac{12}{6} \\
& m=-\frac{1}{3} \\
& y=-\frac{1}{3} x+2 \\
& b=2 \\
& y \text {-int: }(0,2) \\
& m=\frac{\text { rise }-1}{\text { run }+3}=\frac{\text { down } 1}{\text { right } 3}
\end{aligned}
$$

Practice

Graphing in Standard Form Practice

Graph each equation below. The graph, if extended, ill cross a letter. Look for this letter in the string of letters near the bottom of the page and CROSS IT OUT each time it appears. When you finish, write the remaining letters in the rectangle at the bottom of the page.

(2) $x=4$

(5) $3 x+4 y=12$

(8) $2 x-7=0$

I
(3) $2 x-3 y=9$

(6) $6 x-5 y+20=0$

(9) $-2 x=2 y+5$

E

CSIHOWEHOFANDAPLBOIULFGMSIPTOWEIERN

 Answer: \qquadWork for Why Did the Cow Want a Divorce?

1)	2)	
1		

Characteristics of Linear Functions

Zeros and Intercepts

Y-Intercept		
Define: Point where the graph crosses the y-axis	Think: At what coordinate point does the graph cross the y-axis?	Write:
X-Intercept		
Define: Point where the graph crosses the x-axis	Think: At what coordinate point does the graph cross the x-axis?	Write:

X-intercepts:
Y-intercept:

Y-intercept:

X-intercepts:
Y-intercept:

X-intercepts:
Y-intercept:

End Behavior

End Behavior
 Define:

Behavior of the ends of the function (what happens to the y-values or $f(x)$) as x approaches positive or negative infinity. The arrows indicate the function goes on forever so we want to know where those ends go.

Think:

As x goes to the left (negative infinity), what direction does the left arrow go?

Think:

Write:

Write:
As x goes to the right (positive infinity), what direction does the right arrow go?

As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad
As $x \rightarrow \infty, f(x) \rightarrow$ \qquad .

As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad .

As $x \rightarrow \infty, f(x) \rightarrow$ \qquad -.

As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad
As $x \rightarrow \infty, f(x) \rightarrow$ \qquad .

As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad .

As $x \rightarrow \infty, f(x) \rightarrow$ \qquad .

Average Rate of Change

Average Rate of Change

Define:
Rate of change or slope for a given interval on a graph

Think:
How is the graph changing over the given interval?

Calculate the average rate of change for the interval $-3 \leq x \leq 3$.

A horizontal line has a slope of \qquad .

A vertical line has a slope of \qquad .

Calculate the average rate of change for the function $f(x)=3 x$ for the interval $1 \leq x \leq 3$.

Characteristics of Linear Functions Practice

1) Domain:

Range:
\qquad

X-Intercept: \qquad
Y-Intercept: \qquad
Increasing: \qquad
Decreasing: \qquad
Constant: \qquad
Slope: \qquad
As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad

As $x \rightarrow \infty, f(x) \rightarrow$ \qquad .

Equation: \qquad
2) Domain: \qquad
Range: \qquad
X-Intercept: \qquad
Y-Intercept: \qquad
Increasing: \qquad
Decreasing: \qquad
Constant: \qquad
Slope: \qquad
As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad
As $x \rightarrow \infty, f(x) \rightarrow$ \qquad

Equation: \qquad
3) Domain: \qquad
Range: \qquad
X-Intercept: \qquad
Y-Intercept: \qquad
Increasing: \qquad
Decreasing: \qquad
Constant: \qquad
Slope: \qquad
As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad .
As $x \rightarrow \infty, f(x) \rightarrow$ \qquad
Equation: \qquad

4) Domain: \qquad
Range: \qquad
X-Intercept: \qquad
Y-Intercept: \qquad
Increasing: \qquad
Decreasing: \qquad
Constant: \qquad
Slope:
As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad .
As $x \rightarrow \infty, f(x) \rightarrow$ \qquad
Equation: \qquad

5) Domain: \qquad
Range:
X-Intercept: \qquad
Y-Intercept: \qquad
Increasing: \qquad
Decreasing: \qquad
Constant: \qquad
Slope:
As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad .
As $x \rightarrow \infty, f(x) \rightarrow$ \qquad
Equation: \qquad

6) Graph $y=2 x-2$ and identify the characteristics.

Domain: \qquad
Range: \qquad
X-Intercept: \qquad
Y-Intercept: \qquad
Increasing: \qquad
Decreasing: \qquad
Constant: \qquad
As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad .
As $x \rightarrow \infty, f(x) \rightarrow$ \qquad .

7) Graph $f(x)=3 x-6$ and identify the characteristics
Domain: \qquad
Range: \qquad
X-Intercept: \qquad
Y-Intercept: \qquad
Increasing: \qquad
Decreasing: \qquad
Constant: \qquad
As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad .
As $x \rightarrow \infty, f(x) \rightarrow$.

8) Graph $f(x)=-x+2$ and identify the characteristics

Domain: \qquad
Range: \qquad
X-Intercept: \qquad
Y-Intercept: \qquad
Increasing: \qquad
Decreasing: \qquad
Constant: \qquad
As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad $-$
As $x \rightarrow \infty, f(x) \rightarrow$.

9) Graph $y=-\frac{3}{4} x$ and identify the characteristics.

Domain: \qquad
Range: \qquad
X-Intercept: \qquad
Y-Intercept: \qquad
Increasing: \qquad
Decreasing: \qquad
Constant: \qquad
As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad .
As $x \rightarrow \infty, f(x) \rightarrow$ \qquad .

10) Graph $f(x)=-\frac{1}{2} x+4$ and identify the characteristics.

Domain: \qquad
Range: \qquad
X-Intercept: \qquad
Y-Intercept: \qquad
Increasing: \qquad
Decreasing: \qquad
Constant: \qquad
As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad .
As $x \rightarrow \infty, f(x) \rightarrow$.

8) Graph $f(x)=\frac{3}{2} x-5$ and identify the characteristics.

Domain: \qquad
Range: \qquad
X-Intercept: \qquad
Y-Intercept: \qquad
Increasing: \qquad
Decreasing: \qquad
Constant: \qquad
As $x \rightarrow-\infty, f(x) \rightarrow$
As $x \rightarrow \infty, f(x) \rightarrow$
(

Terms to Know

Relation: a set of \qquad that has an \qquad
\diamond Function: a \qquad such that every single \qquad has exactly
\qquad output.

The notation of a function is important in higher mathematics such as calculus and in areas which use mathematics such as physics.
\diamond Domain: \qquad
\diamond Range: \qquad

How do I determine if a relation is function?

\diamond Each input must have \qquad output.
\diamond When given a graph - the vertical line test: NO vertical line can pass through
\qquad points on the graph.

Here are 2 examples of functions and the third is NOT a function.

1) Input the number of seconds after the starting gun in a race to get an output of the number of meters the runner has covered.

Race Chart					
number of seconds (input)	1	4	7	8	
meters covered (output)	5	20	35	40	

2) $y=x-6$, where x is the place holder (also called a \qquad) for the input and y is the place holder for the output.

function $\boldsymbol{y}=-\boldsymbol{x}-\mathbf{6}$				
x (input)	-3	0	7	8
y (output)	-9	-6	1	2

3) The rule about only one output each time is crucial and must not be violated.

not a function				
input	3	2	0	3
output	4	-1	2	-3

Why is this not a function? \qquad

You Try: Determine whether each of the following is a function.

1) $\{(3,2),(4,3),(5,4),(6,5)\}$
2)

3)

4)

Function Notation

\diamond Function notation is \qquad . It is pronounced \qquad .
$\diamond f(x)$ is a fancy way of writing \qquad in an \qquad
Example: $f(x)=2 x+4$ is the same as $y=2 x+4$

Function Notation	$\mathrm{x}-\mathrm{y}$ Notation
$f(x)=5 x+2$	
	$y=-3 x-7$

Evaluating Functions

1) Given $f(x)=2 x+3$, find $f(-2)$ 2) Given $f(x)=32(2)^{x}$, find $f(3)$.
2) Given $f(x)=x^{2}-2 x+3$, find $f(-3)$.
3) Given $f(x)=3^{x}+1$, find $f(3)$.

Function Notation - Continued

When a function can be written as an equation, the symbol $f(x)$ replaces y and is read as "the value of function f at x " or simply " f of x ".

This does NOT mean f times \mathbf{x}.
Replacing y with $f(x)$ is called writing a function in function notation.
\star REMEMBER $\star f(-3)$ means -3 if your input and you plug it in for x $\star f(x)=-3$ means -3 is your output and your whole function is equal to -3 and you plug -3 into the y

Examples:

1) If $f(x)=2 x-3$, find the following.
a) $f(-2)$
b) $f(7)$
c) $f(-4)$
2) If $k(x)=-7 x+1$, find the following.
a) $k(0)$
b) $k(-1)$
c) $k(5)$

Sometimes, there will be multiple x 's in an equation. When this occurs, simply replace all of values of x .
3) If $h(x)=x^{2}-3 x+5$, find the following.
a) $h(-3)$
b) $h(5)$
4) If $p(x)=x^{2}+5 x-3$, find the following.
a) $p(-2)$
b) $p(1)$
5) If $f(x)=5 x-3$, complete the following table of values. Then determine what type of function it is.

x	-2	-1	0	1	2	3
$f(x)$						

Function Notation Worksheet

1) Evaluate the following expressions given the functions below.
$g(x)=-3 x+1$
$f(x)=x^{2}+7$
$h(x)=\frac{12}{x}$
$j(x)=2 x+9$
a) $g(10)=$
b) $f(3)=$
c) $h(-2)=$
d) $j(7)=$
e) $h(a)=$
f) Find x if $g(x)=16$
g) Find x if $h(x)=-2$
h) Find x if $f(x)=23$
2) Translate the following statements into coordinate points.
a) $f(-1)=1$
b) $h(2)=7$
C) $g(1)=-1$
d) $k(3)=9$
3) Given this graph of function $f(x)$, find the following.

4) Evaluate the function using the following graph.

5) Look at the graph below. Find the following values of the function.

a) $f(6)=$
b) $f(2)=$
C) $f(0)=$
d) $f(5)=$
e) For which value(s) of x is the following statement true? $\quad f(x)=1$

Function Notation - Quotable Puzzle

Directions: Solve the following problems. Match that answer to the correct letter of the alphabet. Enter that letter of the alphabet on the blank corresponding to the problem number. \#15 is completed for you.

Simplify.

1) $f(x)=2 x-1$. Find $f(5)$.
2) $f(x)=x^{3}-2 x-1$. Find $f(-2)$.
3) $f(x)=x^{2}-3 x-1$. Find $f(3)$.
4) $f(x)=x^{4}+2 x^{2}-1$. Find $f(2)$.
5) $f(x)=2 x+5$. Find $f(0)$.
6) $f(x)=-4 x-8$. Find $f(-1)$.
7) $f(x)=-2 x^{2}-5$. Find $f(-1)$.
8) $f(x)=2 x-10$. Find $f(1)$.
9) $f(x)=x+5$. Find $f(-7)$.
10) $f(x)=x^{3}-2 x^{2}+x+5$. Find $f(-1)$.
11) $f(x)=6 x^{2}+2 x$. Find $f(1)$.
12) $f(x)=x^{2}-21$. Find $f(5)$.
13) $f(x)=\frac{1}{4} x+2 x$. Find $f(8)$.
14) $f(x)=(x-2)^{2}$. Find $f(-2)$.

$$
\begin{gathered}
f(-2)=((-2)-2)^{2} \\
f(-2)=(-2-2)^{2} \\
f(-2)=(-4)^{2} \\
f(-2)=16
\end{gathered}
$$

Arithmetic Sequences

An \qquad is one that has a \qquad .

In other words, you \qquad or \qquad the same number to get to the next \qquad .

Part A: How do identify an Arithmetic Sequence
A common difference is the number we add or subtract to get to the next term. The common difference must be constant throughout the sequence.
a) $35,32,29,26, \ldots$
b) $9,14,19,24, \ldots$

There are \qquad different ways you can write an arithmetic sequence

Part B: Writing a Recursive Formula for Arithmetic Sequences
A recursive formula finds the next term in the sequence by using the previous term.
Formula: \square

a) $35,32,29,26, \ldots$
b) $9,14,19,24, \ldots$

Part C: Writing an Explicit Formula for Arithmetic Sequences
An explicit formula uses an equation/function/formula to that will calculate/find each term.

a) $35,32,29,26, \ldots$
b) $9,14,19,24, \ldots$

Part D: Using the Explicit Formula to find a specific term in our sequence.
a) $35,32,29,26, \ldots$
b) $9,14,19,24, \ldots$

Find a_{20}.

Find a_{30}.

Arithmetic Sequences Practice Worksheet

Find the $\mathrm{n}^{\text {th }}$ term for each arithmetic sequence.

1) $a_{1}=-5, d=4, n=9$
2) $a_{1}=13, d=-\frac{5}{2}, n=29$
3) $a_{1}=3, d=-4, n=6$
4) $a_{1}=-5, d=\frac{1}{2}, n=10$

Complete each statement.
5) 97 is the \qquad th term of $-3,1,5,9$.
6) -10 is the \qquad th term of $14,12.5,11,9.5$.

Find the indicated term(s) in each arithmetic sequence.
7) a_{15} for $-3,3,9, \ldots$
8) a_{19} for $17,12,7, \ldots$
9) The first term is -7 and the common difference is 3 . Find the next 3 terms.
11) The first term is 9 and the common difference is -4 . Find the next 3 terms and the $100^{\text {th }}$ term.
13) Find the $43^{\text {rd }}$ term of $-124 .-122,-120, \ldots$
15) Find the $51^{\text {st }}$ term of $-67,-164,-161, \ldots$
10) The first term is 6 and the common difference is -4 . Find the next 3 terms.
12) The first term is -6 and the common difference is 5 . Find the next 3 terms and the $100^{\text {th }}$ term.
14) Find the $38^{\text {th }}$ terms of $182,176,170, .$.
16) Find the $29^{\text {th }}$ term of $182,176,170, \ldots$

Write the recursive rule and explicit formula for each arithmetic sequence.
17) $5,7,9,11,13, \ldots$
18) $-4,-5,-6,-7,-8, \ldots$
19) $10,15,20,25, \ldots$
20) $-9,-2,5,12,19, \ldots$
21) $23,20,17,14, \ldots$
22) $3,7,11,15,19, \ldots$
23) $8,6.5,5,3.5,2, \ldots$
24) $9,11.5,14,16.5, \ldots$
25) $-8,-3,2,7,12, \ldots$
26) $3,10,17,24,31, \ldots$

