Trigonometry
Solving Trig Equations - Part 1

Trig Identities, like the one to the right, are true for ALL angles: $\quad \sin ^{2} x+\cos ^{2} x=1$
Trig Equations, like the one to the right, are only true for SOME angles: $\sin x=1$

When we solve trig equations, we must find the values of \mathbf{x} that make the statement true. The equation, $\sin x=1$, is true when $x=\frac{\pi}{2}, \frac{5 \pi}{2}, \frac{9 \pi}{2}, \ldots$ A general solution would be $x=\frac{\pi}{2}+2 \pi k$.

Example: Solve $2 \sin x-1=0$.

$$
\begin{aligned}
&\left.\begin{array}{rl}
2 \sin x-1 & =0 \\
2 \sin x & =1 \\
\sin x & =\frac{1}{2}
\end{array}\right\} \quad \text { Isolate the } \sin x \text { term } \\
& x=\sin ^{-1}\left(\frac{1}{2}\right) \rightarrow \text { Take the inverse sin } \\
& x=30^{\circ}+360 k, 150^{\circ}+360 k \quad \begin{array}{l}
\rightarrow \text { Write an expression that lists } \\
\text { all of the solutions, including } \\
\text { coterminal angles. }
\end{array}
\end{aligned}
$$

Example: Solve $\sin x+\sqrt{2}=-\sin x$.

$$
\begin{aligned}
& \sin x+\sqrt{2}=-\sin x \\
& 2 \sin x+\sqrt{2}=0 \\
& 2 \sin x=-\sqrt{2} \\
& \sin x=-\frac{\sqrt{2}}{2} \\
& x=\sin ^{-1}\left(-\frac{\sqrt{2}}{2}\right) \rightarrow \text { Collect } \sin x \text { terms on one side. } \\
& x \rightarrow \frac{5 \pi}{4}+2 \pi k, \frac{7 \pi}{4}+2 \pi k \\
& \text { Isolate the } \sin x \text { term } \\
& x
\end{aligned}
$$

Example: Solve $3 \tan ^{2} x-1=0$.

$$
\left.\begin{array}{rl}
3 \tan ^{2} x-1 & =0 \\
3 \tan ^{2} x & =1 \\
\tan ^{2} x & =\frac{1}{3}
\end{array}\right\} \quad \text { Isolate the } \tan ^{2} x \text { term }
$$

Example: Solve $2 \cos 3 x-1=0$.

$$
\left.\left.\begin{array}{rl}
2 \cos 3 x-1 & =0 \\
2 \cos 3 x & =1 \\
\cos 3 x & =\frac{1}{2}
\end{array}\right\} \begin{array}{l}
\text { When the equation involves a multiple } \\
\text { angle, don't divide by the coeffient of the } \\
\text { angle, isolate the } \cos 3 x \text { term }
\end{array}\right\} \begin{aligned}
3 x & =\cos ^{-1} \frac{1}{2} \\
3 x & =60^{\circ}+360 k, 300^{\circ}+360 k \\
x & =20^{\circ}+120 k, 100^{\circ}+120 k \quad
\end{aligned} \quad \begin{aligned}
& \rightarrow \text { Divide both sides by the } \\
& \text { coefficient of the angle. }
\end{aligned}
$$

Trigonometry

Solving Trig Equations - Part 2

Sometimes the trig equation is in the form of a quadratic equation, and can be solved by either factoring or by using the quadratic formula.

Example: Solve $2 \sin ^{2} x-\sin x-1=0$.

$$
\begin{array}{cl}
2 \sin ^{2} x-\sin x-1=0 \\
(\sin x-1)(2 \sin x+1)=0 \\
\sin x=1 \quad \text { and } 2 \sin x=-1 \\
x=\sin ^{-1} 1 & \sin x=-\frac{1}{2} \\
\begin{array}{cc}
x=90^{\circ}+360 k & x=\sin ^{-1}\left(-\frac{1}{2}\right) \\
& x=210^{\circ}+360 k, 330^{\circ}+360 k
\end{array}
\end{array}
$$

Example: \quad Solve $\cot x \cos ^{2} x=2 \cot x$.

$$
\begin{aligned}
& \cot x \cos ^{2} x=2 \cot x \\
& \cot x \cos ^{2} x-2 \cot x=0 \\
& \cot x\left(\cos ^{2} x-2\right)=0 \\
& \cot x=0 \quad \text { and } \quad \cos ^{2} x=2 \\
& x=\cot ^{-1} 0 \quad \sqrt{\cos ^{2} x}=\sqrt{2} \\
& \hline x=90^{\circ}+180 k \quad \cos x= \pm \sqrt{2} \\
& \hline \cos x \text { can't equal } \sqrt{ } 2
\end{aligned}
$$

Example: \quad Solve $2 \tan x \sin x+2 \sin x=\tan x+1$.

$$
\begin{aligned}
& 2 \tan x \sin x+2 \sin x=\tan x+1 \\
& 2 \tan x \sin x+2 \sin x-\tan x-1=0 \\
& 2 \sin x(\tan x+1)-1(\tan x+1)=0 \quad \rightarrow \text { Factor by grouping! } \\
& (\tan x+1)(2 \sin x-1)=0 \\
& \tan x=-1 \quad 2 \sin x=1 \\
& x=\tan ^{-1}(-1) \quad \sin x=\frac{1}{2} \\
& x=135^{\circ}+180 k \quad x=\sin ^{-1}\left(\frac{1}{2}\right) \\
& \begin{array}{|l|}
\hline x=30^{\circ}+360 k \\
x=150^{\circ}+360 k
\end{array}
\end{aligned}
$$

Example: Solve $\sin ^{2} x-3 \sin x-2=0$.

$$
\begin{aligned}
\sin ^{2} x-3 \sin x-2 & =0 \\
\sin x & =\frac{3 \pm \sqrt{9-4(1)(-2)}}{2} \\
\sin x & =\frac{3 \pm \sqrt{17}}{2} \\
x & =\sin ^{-1}\left(\frac{3 \pm \sqrt{17}}{2}\right) \\
x & =\sin ^{-1}\left(\frac{3-\sqrt{17}}{2}\right)
\end{aligned}
$$

Since this is not factorable, we will use the quadratic formula, solving for $\sin x$ instead of x.

These values are not standard values, check to see if they are within the valid limits (-1 to 1); $\frac{3+\sqrt{17}}{2}$ is outside the limit, so exclude it from the answer

Trigonometry

Solving Trig Equations - Part 3
Sometimes we need to use an identity to rewrite the equation into a form we can solve. If the equation is in the form of a quadratic trinomial, it also helps to write all the trig expressions in terms of the same trig function.

Example: $\sin ^{2} x+\cos 2 x-\cos x=0$

$$
\begin{array}{cc}
\sin ^{2} x+\cos 2 x-\cos x=0 & \rightarrow \text { Replace } \cos 2 x \text { with single angles } \\
\sin ^{2} x+\cos ^{2} x-\sin ^{2} x-\cos x=0 & \rightarrow \text { The } \sin ^{2} x \text { s cancel, leaving an } \\
\cos ^{2} x-\cos x=0 & \text { equation entirely in terms of } \cos x \\
\cos x(\cos x-1)=0 & \\
\cos x=0 & \cos x=1 \\
x=\cos ^{-1} 0 & x=\cos ^{-1} 1 \\
x=90^{\circ}+180 \mathrm{k} & x=0^{\circ}+360 \mathrm{k}
\end{array}
$$

Example: $2 \sin ^{2} x+3 \cos x-3=0$

$$
\begin{aligned}
& 2 \sin ^{2} x+3 \cos x-3=0 \quad \rightarrow \text { Replace } \sin ^{2} x \text { with } 1-\cos ^{2} x \\
& 2\left(1-\cos ^{2} x\right)+3 \cos x-3=0 \\
& 2-2 \cos ^{2} x+3 \cos x-3=0 \\
& 2 \cos ^{2} x-3 \cos x+1=0 \\
& (2 \cos x-1)(\cos x-1)=0 \\
& \cos x=\frac{1}{2} \quad \cos x=1 \\
& x=60^{\circ}+360 k, \quad x=0^{\circ}+360 k \\
& x=300^{\circ}+360 k
\end{aligned}
$$

Example: $\sec ^{2} x-2 \tan x=4$

$$
\begin{aligned}
& 1+\tan ^{2} x-2 \tan x=4 \\
& \tan ^{2} x-2 \tan x-3=0 \\
& (\tan x-3)(\tan x+1)=0 \\
& \tan x=3 \quad \tan x=-1 \\
& x=\tan ^{-1} 3 \frac{\tan }{x=\tan ^{-1}(-1)} \\
& x=\tan ^{-1} 3+180 k \quad x=135^{\circ}+180 k \\
&
\end{aligned}
$$

Example: $\quad \sin x=\tan x$

$$
\begin{array}{cl}
\sin x=\tan x & \\
\sin x-\frac{\sin x}{\cos x}=0 & \begin{array}{l}
\text { Replace } \tan x \text { with } \sin x / \cos x . \text { This } \\
\text { expression still has 2 different trig } \\
\text { functions, but it is still factorable. We don't } \\
\text { always need to rewrite the equation in terms of } \\
\text { a single trig function. }
\end{array} \\
\sin x\left(1-\frac{1}{\cos x}\right)=0 & \sec x=1 \\
\sin x=0 & x=\sec ^{-1} 1 \\
x=\sin ^{-1} 0 & \quad \begin{array}{l}
\text { sec } x)=0 \\
x=0^{\circ}+180 k \quad x=0^{\circ}+360 k
\end{array} \\
x=0^{\circ}+180 k & \begin{array}{l}
\text { Both factors have the same solution, } \\
\text { we only need to write it once. }
\end{array}
\end{array}
$$

Trigonometry
Solving Trig Equations - Part 4
In the next example, none of our identities will help us get the equation into a form we can solve, so we will square both sides of the equation. NOTE: When we square both sides of an equation, we subject ourselves to the possibility of extraneous solutions! We will need to check our solutions before moving on!

Example:

$$
\begin{aligned}
& \cos x+1=\sin x \\
& \cos x+1=\sin x \\
& (\cos x+1)^{2}=\sin ^{2} x \\
& \cos ^{2} x+2 \cos x+1=1-\cos ^{2} x \\
& 2 \cos ^{2} x+2 \cos x=0 \\
& 2 \cos x(\cos x+1)=0 \\
& \cos x=0 \quad \cos x=-1 \\
& x=\cos ^{-1} 0 \quad x=\cos ^{-1}(-1) \\
& x=90^{\circ}+180 k \quad x=180^{\circ}+360 k
\end{aligned}
$$

Test both sets of solutions.

$$
\begin{aligned}
\cos 90^{\circ}+1 & =\sin 90^{\circ} & \\
0+1 & =1 \quad(\text { yes }) & \cos 180^{\circ}+1=\sin 180^{\circ} \\
\cos 270^{\circ}+1 & =\sin 270^{\circ} & -1+1=0 \quad(\text { yes }) \\
0+1 & =-1 \quad \text { (no) } &
\end{aligned}
$$

Final solution:

$$
x=90^{\circ}+360 k \quad x=180^{\circ}+360 k
$$

