Using inverse functions. - and two angles in radians between 0 and 2π that satisfy $\tan \theta = 1$. - 2. Find two degree values between 0° and 360° that satisfy $\tan \theta = -2.9577$. - 3. Find two degree values between 0° and 360° that satisfy $\cos \theta = 0.4537$ - 4. Find two angles in radians between 0 and 2π that satisfy $\sin \theta = -\frac{\sqrt{2}}{2}$. - 5. Find two degree values between 0° and 360° that satisfy $\sin \theta = \bar{6}$. - 6. Find two angles in radians between 0 and 2π that satisfy $\cos \theta = 0.989$. - 7. Evaluate $\arctan(-1)$ with two angles between 0 and 2π . - 8. Evaluate $\sin^{-1}(.\bar{6})$ with two angles between 0° and 360° . - 9. Evaluate $\arccos(0.55536)$ with two angles between 0° and 360° . Convert your answer to radians. Why aren't there two angles θ_1 and θ_2 between 0 and 2π such that $\arcsin(1) = \theta_1$ and $\arcsin(1) = \theta_2$ Sketch the Graph of $y = \arcsin x$ Sketch the Graph of $y = \arccos x$. Sketch the Graph of $y = \tan^{-1}x$.