Good Morning!

- 1. Make sure you are using First and Last name.
- 2. Type "here" for attendance.
- 3. Discuss practice quiz.
- 4. Take Quiz 1.
- 5. Transformations Notes

 $m \angle QRS = 10x + 10$, $m \angle PRS = 4x + 8$, and $m \angle QRP = 68^\circ$. Find x.

Find $m \angle DRS$.

When taking assessments,

- 1. Camera is ON.
- 2. No cheating.

Geometry F20 Quiz 1

3. As you guys finish, go ahead and get the notes ready for today!

Transformation Rules Translation- moves every point of a figure by the same distance in a given direction. We can "slide" a point or a figure left, right, up or down. Pefine Right: $(x,y) \rightarrow$ This will shift the point "a" units **right**Left: $(x,y) \rightarrow$ This will shift a point "a" units **left**. Up: $(x,y) \rightarrow$ This will shift a point "b" units **up**Down: $(x,y) \rightarrow$ This will shift a point "b" units **down**. Examples: Translate "A" Right 3 Units

Transformation Rules

<u>**Translation**</u>- moves every point of a figure by the same distance in a given direction.

We can "slide" a point or a figure left, right, up or down.

Define

• Right: $(x,y) \rightarrow (x+a, y)$ This will shift the point "a" units **right**

• Down: $(x,y) \rightarrow (x, y-b)$ This will shift a point "b" units **down**.

<u>Pre Image</u>: The figure before any transformations have occurred

• Left: $(x,y) \rightarrow (x-a, y)$ This will shift a point "a" units **left**.

<u>Image</u>: The figure after transformations have occurred

• Up: $(x,y) \rightarrow (x,y+b)$ This will shift a point "b" units **up**

Examples:

You Try!

1.

2.

3. Working Backwards: The coordinates shown were translated by the rule $(x,y) \rightarrow (x+5, y-2)$.

What were the coordinates of the pre-image?

B (-1,9)→B' (4,7)

4. Writing a rule: Write a rule that would produce the translation shown below.

$$a. A (3,7) \rightarrow A' (-5,4)$$

Rule:
$$(x,y) \rightarrow (x-8, y-3)$$

b. B $(4,5) \rightarrow B'(9,-2)$ Rule: $(x,y) \rightarrow$

Rule:
$$(x,y) \rightarrow$$

c. Using the figure, determine the rule for the translation that has occurred.

Rule: $(x, y) \rightarrow (x+4, y-1)$

Reflections: A reflection "flips" a point or a figure over a given line. All the points of the image will be the same distance away from the line of reflection as the preimage, just on the opposite side of the line.

- Reflect over x-axis: Change the sign of y. (x,y)→
- Reflect over y-axis: Change the sign of x. $(x,y) \rightarrow$

You Try!

1.

2.

3. Apply the given reflection to the coordinates below.

a. Reflect over
$$y = x$$

b. Reflect over
$$y = -x$$

4. Determine the line of reflection:

a. Given the coordinate:

b. Given the coordinate:

c. Given the coordinate:

5. Determine the line of reflection from the figures:

a.

b.

Reflecting over a given line: Mirror the points the same distance away on the other side

X = # is always a vertical line!

Y = # is always a horizonal line!

Examples:

a. Reflect the point A over the line x = -1. "A" is two units away from the line x = -1, so we place A' two units away from x = -1, on the opposite side of the line.

b. Reflect the point A over the line y = -2. The point A is six units from the line y = -2, so we place A' six units away from y = -2 on the opposite side.

You Try! A. Reflect $\triangle ABC$ over the line y = 1. B. Reflect $\triangle ABC$ over the line x = 1.

<u>Rotations</u>: When we rotate a point or figure, we are turning it about a fixed point called the **center of rotation**. We will assume that the center of rotation is the origin unless otherwise specified.

- When the center of rotation is the origin, we have a set of rules we can apply to our coordinate.
- The direction of rotation is understood to be counter-clockwise unless otherwise specified.

90 Degrees CCW is the same as 270 CW

• Use the rule $(x,y) \rightarrow (-y,x)$

270 Degrees CCW is the same as 90 CW

• Use the rule $(x,y) \rightarrow (y,-x)$

180 Degrees is the same in both directions

• Use the rule $(x,y) \rightarrow (-x,-y)$

Why Counter Clockwise??
The quadrants of the coordinate Plane

III IV

Examples with one point: A is the point (3,7). Let's look at what happens to it as we rotate.

b. Rotate 270° CCW (90CW)

C. Rotate 180

Look in Depth: What's really happening as we rotate?

- We are dragging our point along an imaginary circle! Each time we preform a rotation, the point will be the same distance away from the center of rotation, just a different spot!
- If we want to rotate about a point that is not the origin, the process is a little bit different....

When the center of rotation is NOT the origin, here's what we can do:

- 1. Subtract the center of rotation from your coordinate. This shifts the center of rotation back to the origin, allowing us to use our rules.
- 2. Apply the rule.
- 3. Add the center of rotation back to your coordinate. This shifts the center of rotation back to the right spot.

[ake a Look: Rotate △ABC 180° about the point (-4,1)

1. Subtract the center of rotation from each coordinate:

A
$$(-3,-2)$$
 becomes $(-3--4,-2-1) = A^*$

B $(-1,-4)$ becomes $(-1--4,-4-1) = B^*$

C $(-3,-4)$ becomes $(-3--4,-4-1) = C^*$

2. Apply the Rule: 180 degrees $(x,y) \rightarrow (-x,-y)$

3. Add the Center of Rotation back in!

You Try!

1.

2.

3.

4.

5. Determine the transformation that has occurred from the coordinates:

6. Determine the transformation that has occurred from the figures:

a.

b.

