Good Morning!

- 1. Make sure you are using First and Last name.
- 2. Type "here" for attendance.
- 3. Discuss practice quiz.
- 4. Take Quiz 1.
- 5. Transformations Notes

 $m \angle QRS = 10x + 10$, $m \angle PRS = 4x + 8$, and $m \angle QRP = 68^\circ$. Find x.

Find $m \angle DRS$.

When taking assessments,

- 1. Camera is ON.
- 2. No cheating.

Geometry F20 Quiz 1

3. As you guys finish, go ahead and get the notes ready for today!

Transformation Rules Translation- moves every point of a figure by the same distance in a given direction. We can "slide" a point or a figure left, right, up or down. Pefine Right: $(x,y) \rightarrow$ This will shift the point "a" units **right**Left: $(x,y) \rightarrow$ This will shift a point "a" units **left**. Up: $(x,y) \rightarrow$ This will shift a point "b" units **up**Down: $(x,y) \rightarrow$ This will shift a point "b" units **down**. Examples: Translate "A" Right 3 Units

Transformation Rules

 $\underline{\textbf{Translation}}\text{-} \text{ moves every point of a figure by the same distance in a given direction.}$

We can "slide" a point or a figure left, right, up or down.

Define

• Right: $(x,y) \rightarrow (x+a, y)$ This will shift the point "a" units **right**

<u>Pre Image</u>: The figure before any transformations have occurred

• Left: $(x,y) \rightarrow (x-a, y)$ This will shift a point "a" units **left**.

<u>Image</u>: The figure after transformations have occurred

• Up: $(x,y) \rightarrow (x, y+b)$ This will shift a point "b" units **up**

• Down: $(x,y) \rightarrow (x, y-b)$ This will shift a point "b" units **down**.

Examples:

You Try!

1.

2.

3. Working Backwards: The coordinates shown were translated by the rule $(x,y) \rightarrow (x+5, y-2)$.

What were the coordinates of the pre-image?

4. Writing a rule: Write a rule that would produce the translation shown below.

Rule:
$$(x,y) \rightarrow (x-8, y-3)$$

Rule:
$$(x,y) \rightarrow$$

c. Using the figure, determine the rule for the translation that has occurred.

Rule: $(x, y) \rightarrow (x+4, y-1)$

Good Morning!

- 1. Make sure you are using First and Last name.
- 2. Type "here" for attendance.
- 3. Finish up Transformation Notes.
- 4. Practice Rotations.
- 5. DeltaMath assignment will practice all three:)

Reflections: A reflection "flips" a point or a figure over a given line. All the points of the image will be the same distance away from the line of reflection as the preimage, just on the opposite side of the line.

- Reflect over x-axis: Change the sign of y. $(x,y) \rightarrow (x,-y)$
- Reflect over y-axis: Change the sign of x. $(x,y) \rightarrow (-x, y)$

You Try!

- 3. Apply the given reflection to the coordinates below.
- a. Reflect over y = x b. Reflect over y = -x

c.Reflect over x-axis

 $A(1,2) \rightarrow A'(2,1)$

 $B(3,-4) \rightarrow B'(4,-3)$ $C(-3,-2) \rightarrow C'(-3,2)$

- 4. Determine the line of reflection:
- a. Given the coordinate:

b. Given the coordinate:

c. Given the coordinate:

c(-3,-2)→ c'(-2,-3) Switch

Reflect over y= - x 💛

Reflect over y=x

Reflect over y= - x

Reflect over x-axis

Reflecting over a given line: Mirror the points the same distance away on the other side

X = # is always a vertical line!

Y = # is always a horizonal line!

Examples:

a. Reflect the point A over the line x = -1. "A" is two units away from the line x = -1, so we place A' two units away from x = -1, on the opposite side of the line.

b. Reflect the point A over the line y = -2. The point A is six units from the line y = -2, so we place A' six units away from y = -2 on the opposite side.

You Try! A. Reflect $\triangle ABC$ over the line y = 1. B. Reflect $\triangle ABC$ over the line x = 1.

<u>Rotations</u>: When we rotate a point or figure, we are turning it about a fixed point called the <u>center of rotation</u>. We will assume that the center of rotation is the origin unless otherwise specified.

- When the center of rotation is the origin, we have a set of rules we can apply to our coordinate.
- The direction of rotation is understood to be counter-clockwise unless otherwise specified.

Why Counter Clockwise??

The quadrants of the coordinate plane are *numbered* in a <u>counter clockwise</u>

ΙV

90 Degrees CCW is the same as 270 CW

• Use the rule $(x,y) \rightarrow (-y,x)$

270 Degrees CCW is the same as 90 CW

• Use the rule $(x,y) \rightarrow (y,-x)$

direction. II

180 Degrees is the same in both direction

• Use the rule $(x,y) \rightarrow (-x,-y)$

Examples with one point: A is the point (3,7). Let's look at what happens to it as we rotate.

Look in Depth: What's really happening as we rotate?

- We are dragging our point along an imaginary circle! Each time we preform a rotation, the point will be the same distance away from the center of rotation, just a different spot!
- If we want to rotate about a point that is not the origin, the process is a little bit different....

When the center of rotation is NOT the origin, here's what we can do:

- 1. Subtract the center of rotation from your coordinate. This shifts the center of rotation back to the origin, allowing us to use our rules.
- 2. Apply the rule.
- 3. Add the center of rotation back to your coordinate. This shifts the center of rotation back to the right spot.

Take a Look: Rotate △ABC 180° about the point (-4,1)

1. Subtract the center of rotation from each coor

$$A(-3,-2)$$
 becomes $(-3,-4,-2,-1) = A*(1,-3)$

$$B(-1,-4)$$
 becomes $(-1 - -4, -4 - 1) = B*(3,-5)$

$$C(-3,-4)$$
 becomes $(-3-4,-4-1)=C^*(1,-5)$

2. Apply the Rule: 180 degrees $(x,y) \rightarrow (-x,-y)$

A*(1,-3) becomes A**(-1,3)

B*(3,-5) becomes B** (-3,5)

C*(1,-5) becomes C** (-1,5)

3. Add the Center of Rotation back in!

$$A^{**}(1,3)$$
 becomes $(-1+-4,3+1)=A'(-5,4)$

$$B^{**}(-3,5)$$
 becomes $(-3+-4,5+1)=B'(-7,6)$

$$C^{**}(-1,5)$$
 becomes $(-1+-4,5+1)=C'(-5,6)$

____ Date: ____

Rotations Practice

- 1. Where will the L-Shape be if it is...
 - a. rotated 180° around the origin?

b. rotated 90° clockwise around the origin?

- c. rotated 90° counterclockwise around the origin?
- d. rotated 270° clockwise around the origin?

e. rotated 90° counterclockwise around the point (3, 0)?

2. Rotate each figure about the origin using the given clockwise angle.

b. 270°

c. 90°

Adapted from: Mathematics Vision Project

d. 270°

e. 180°

f. 90°

3. Find the angle of rotation for the graphs below. The center of rotation is the origin, and the Image labeled A is the preimage. Your answer will be 90°, 180°, or 270°.

a.

C.

