Characteristics of Exponential Functions
Y-Intercepts and Asymptotes

Y-Intercept					
Define: Point where the graph crosses the y-axis	Think: At what coordinate point does the graph cross the y-axis?	Write: *look at graph or plug in 0 for x*			
Asymptotes					
Define:	Define:				
A line that the graph get					
closer and closer to, but					
never touches or crosses.				\quad	A line that the graph get
:---:					
closer and closer to, but					
never touches or crosses.	\quad	A line that the graph get			
:---:					
closer and closer to, but					
never touches or crosses.					

Y-intercept:
Asymptote:

Y-intercept:
Asymptote:

Y-intercept:
Asymptote:

Y-intercept:
Asymptote:

Domain and Range

Domain:
Range:

Domain:
Range:

Intervals of Increase and Decrease

Interval of Increase		
Define: The part of the graph that is rising as you read left to right.	Think: From left to right, is my graph going up?	Write: Same as the domain or none
Interval of Decrease		
Define: The part of the graph that is falling as you read from left to right.	Think: From left to right, is my graph going down?	Write: Same as the domain or none
Exponential functions are either increasing or decreasing - they can't be both Write none for whichever it is not.		

Interval of Increase:

Interval of Decrease:

Interval of Increase:

Interval of Decrease:

End Behavior

End Behavior

Define:
Behavior of the ends of the function (what happens to the y-values or $f(x)$) as x approaches positive or negative infinity. The arrows indicate the function goes on forever so we want to know where those ends go.

Think:
 Write:

As \times goes to the left (negative infinity), what direction does the left arrow go?

Think:

As \times goes to the right (positive infinity), what direction does the right arrow go?

As $x \rightarrow-\infty, f(x) \rightarrow$
will be $\infty,-\infty$, or asymptote

Write:

As $x \rightarrow \infty, f(x) \rightarrow$ \qquad
will be $\infty,-\infty$, or asymptote

As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad
As $x \rightarrow \infty, f(x) \rightarrow$ \qquad

As $x \rightarrow \infty, f(x) \rightarrow$ \qquad
As $x \rightarrow-\infty, f(x) \rightarrow$

As $x \rightarrow \infty, f(x) \rightarrow$ \qquad
As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad

As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad
As $x \rightarrow \infty, f(x) \rightarrow$

Average Rate of Change (From a Graph)

Average Rate of Change: Rate of change or slope for a given interval on a graph. The given interval is written using the inequality notation $a \leq x \leq b$, where a and b represent the initial and final x-value of the interval. *Find the two points based on given x values and then use the slope formula.*

$$
A R O C=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Calculate the average rate of change for the interval $0 \leq x \leq 2$.

Calculate the average rate of change for the interval $0 \leq x \leq 2$.

Calculate the average rate of change for the interval $-1 \leq x \leq 2$.

Calculate the average rate of change for the interval $0 \leq x \leq 1$.

Average Rate of Change (From an Equation)

If you are given an equation of a function and asked to calculate the average rate of change for that function over a given interval, you will substitute the initial x-value and the final x-value into the function to create two sets of ordered pairs. Then using the ordered pairs, substitute into the slope formula.
a. $y=3 x ; 1 \leq x \leq 3$
b. $y=2\left(\frac{1}{2}\right)^{x} ;-4 \leq x \leq 0$

Average Rate of Change over [-1, 3]
As $x \rightarrow \infty, f(x) \rightarrow$ \qquad As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad

Domain:

Range:

Y-Intercept:

Asymptote:

Interval of Increase:

Interval of Decrease:

Average Rate of Change over [1, 4]
As $x \rightarrow \infty, f(x) \rightarrow$ \qquad As $x \rightarrow-\infty, f(x) \rightarrow$

Characteristics of Exponentials - Matching

$\mathrm{A}:(0,4)$	$\mathrm{B}:(0,5)$	$\mathrm{C}:(1.5,0)$	$\mathrm{D}:(0,-1.5)$	$\mathrm{E}:(0,-3.5)$
$\mathrm{F}: y=6$	$\mathrm{G}: y=5$	$\mathrm{H}: y=4$	$\mathrm{I}: y=0$	$\mathrm{~J}: y=-2$
$\mathrm{~K}: y=-1.5$	$\mathrm{~L}:(-\infty, \infty)$	$\mathrm{M}:(-\infty,-1.5)$	$\mathrm{N}:(-\infty,-3.5)$	$\mathrm{O}:(-\infty, 0)$
$\mathrm{P}:(-\infty, 6)$	$\mathrm{Q}:(6, \infty)$	$\mathrm{R}:(1.5, \infty)$	$\mathrm{S}:(-\infty, 4)$	$\mathrm{T}:(4, \infty)$

1)

Range:
Y-Int:
Asymptote:
3)

Range:
Y-Int:
Asymptote:
2)

Range:
Y-Int:
Asymptote:
4)

Range:
Y-Int:
Asymptote:

