## **Characteristics of Exponential Functions**

#### Y-Intercepts and Asymptotes

| Y-Intercept               |                           |                           |  |  |
|---------------------------|---------------------------|---------------------------|--|--|
| Define:                   | Think:                    | Write:                    |  |  |
| Point where the graph     | At what coordinate point  | (O, #)                    |  |  |
| crosses the y-axis        | does the graph cross the  | *look at graph or plug    |  |  |
|                           | y-axis?                   | in 0 for x*               |  |  |
| Asymptotes                |                           |                           |  |  |
| Define:                   | Define:                   | Define:                   |  |  |
| A line that the graph get | A line that the graph get | A line that the graph get |  |  |
| closer and closer to, but | closer and closer to, but | closer and closer to, but |  |  |
| never touches or crosses. | never touches or crosses. | never touches or crosses. |  |  |



Y-intercept:

Asymptote:



Y-intercept:

Asymptote:



Y-intercept:

Asymptote:



Y-intercept: Asymptote:

# Domain and Range

| Domain                   |                                   |                                   |  |  |
|--------------------------|-----------------------------------|-----------------------------------|--|--|
| Define:                  | Think:                            | Write:                            |  |  |
| All possible values of   | How far left to right does        | $(-\infty,\infty)$                |  |  |
| х                        | the graph go? OR all real numbers |                                   |  |  |
| Range                    |                                   |                                   |  |  |
|                          |                                   | Write:                            |  |  |
| Define:                  | Think:                            | (#,#)                             |  |  |
| All possible values of   | How far down to how far           | (lowest y value, highest y value) |  |  |
| У                        | up does the graph go?             | *will involve the asymptote       |  |  |
|                          |                                   | and ∞ or -∞*                      |  |  |
| 50 <sup>1</sup> <i>Y</i> | F                                 |                                   |  |  |



Domain:

Range:

X

Domain:

Range:



Domain:

Range:



Domain:

Range:

#### Intervals of Increase and Decrease

| Interval of Increase                                                                                                     |                                                                 |                                                |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------|--|--|--|
| <b>Define:</b><br>The part of the graph<br>that is rising as you<br>read left to right.                                  | <b>Think:</b><br>From left to right, is my<br>graph going up?   | <b>Write:</b><br>Same as the domain<br>or none |  |  |  |
| Interval of Decrease                                                                                                     |                                                                 |                                                |  |  |  |
| <b>Define:</b><br>The part of the graph<br>that is falling as you<br>read from left to right.                            | <b>Think:</b><br>From left to right, is my<br>graph going down? | <b>Write:</b><br>Same as the domain<br>or none |  |  |  |
| *Exponential functions are either increasing or decreasing – they can't be both.<br>Write none for whichever it is not.* |                                                                 |                                                |  |  |  |



Interval of Increase:

Interval of Decrease:



Interval of Increase:

Interval of Decrease:

### **End Behavior**

| End Behavior                                                                       |                                                 |  |  |  |
|------------------------------------------------------------------------------------|-------------------------------------------------|--|--|--|
| Define:                                                                            |                                                 |  |  |  |
| Behavior of the ends of the function (what happens to the y-values or f(x)) as x   |                                                 |  |  |  |
| approaches positive or negative infinity. The arrows indicate the function goes on |                                                 |  |  |  |
| forever so we want to know where those ends go.                                    |                                                 |  |  |  |
| Think:                                                                             | Write:                                          |  |  |  |
| As x goes to the left (negative infinity), what                                    | As $x \rightarrow -\infty$ , f(x) $\rightarrow$ |  |  |  |
| direction does the left arrow go?                                                  | *will be ∞, -∞, or asymptote*                   |  |  |  |
| Think:                                                                             | Write:                                          |  |  |  |
| As x goes to the right (positive infinity), what                                   | As $x \rightarrow \infty$ , f(x) $\rightarrow$  |  |  |  |
| direction does the right arrow go?                                                 | *will be ∞, -∞, or asymptote*                   |  |  |  |



| As x - | $\rightarrow -\infty$ , | f(x) | $\rightarrow$ |  |
|--------|-------------------------|------|---------------|--|
|--------|-------------------------|------|---------------|--|

As 
$$x \to \infty$$
,  $f(x) \to$ \_\_\_\_\_

|             | у                                             |
|-------------|-----------------------------------------------|
|             |                                               |
|             | 8                                             |
|             | 6                                             |
|             | 4                                             |
|             | 2                                             |
| -8 -6 -4 -> | <u>, , , , , , , , , , , , , , , , , , , </u> |
| 8 6 4 2     |                                               |
|             | 2                                             |
|             |                                               |
|             | 4                                             |
|             |                                               |
|             | 6                                             |
|             |                                               |





As 
$$x \to \infty$$
,  $f(x) \to$ \_\_\_\_\_

As 
$$x \to -\infty$$
,  $f(x) \to$ \_\_\_\_\_



$$As \ x \to -\infty, f(x) \to \_\_\_$$
$$As \ x \to \infty, f(x) \to \_\_\_$$

## Average Rate of Change (From a Graph)

Average Rate of Change: Rate of change or slope for a given interval on a graph. The given interval is written using the inequality notation  $a \le x \le b$ , where a and b represent the initial and final x-value of the interval. \*Find the two points based on given x values and then use the slope formula.\*

$$AROC = \frac{y_2 - y_1}{x_2 - x_1}$$

Calculate the average rate of change for the interval  $0 \le x \le 2$ .



Calculate the average rate of change for the interval  $0 \le x \le 2$ .



Calculate the average rate of change for the interval  $-1 \le x \le 2$ .



Calculate the average rate of change for the interval  $0 \le x \le 1$ .



## Average Rate of Change (From an Equation)

If you are given an equation of a function and asked to calculate the average rate of change for that function over a given interval, you will substitute the initial x-value and the final x-value into the function to create two sets of ordered pairs. Then using the ordered pairs, substitute into the slope formula.

a. 
$$y = 3^{x}$$
;  $1 \le x \le 3$ 

b. 
$$y = 2\left(\frac{1}{2}\right)^{x}$$
;  $-4 \le x \le 0$ 

#### **Characteristics Practice**



Average Rate of Change over [-1, 3] As  $x \to \infty$ ,  $f(x) \to \_$  As  $x \to -\infty$ ,  $f(x) \to \_$ 



| A: (0,4)      | B: (0,5)        | C: (1.5,0)   | D: (0, -1.5)  | E: (0, -3.5) |
|---------------|-----------------|--------------|---------------|--------------|
| F: $y = 6$    | G: <i>y</i> = 5 | H: $y = 4$   | I: $y = 0$    | J: $y = -2$  |
| K: $y = -1.5$ | L: (−∞,∞)       | M: (−∞,−1.5) | N: (−∞, −3.5) | O: (−∞, 0)   |
| P: (−∞, 6)    | Q: (6,∞)        | R: (1.5,∞)   | S: (−∞, 4)    | T: (4,∞)     |



## Range:

Range:

Y-Int:

Y-Int:

Asymptote:

Asymptote:





# Range:

Y-Int:

Asymptote:

Range:

Y-Int:

Asymptote: