Graphing Exponential Functions

To graph exponential functions, begin by identifying the value of h. This will go in the middle of the x-values on your table (you want three spaces on each side of h). Fill in the other x-values of your table by adding/subtracting 1. Then, use your calculator to find the y-values. Then graph.

1) $y=2^{x-3}+1$
2) $y=2\left(\frac{1}{2}\right)^{x+5}-2$

x								x							
y								y							

31) $y=-3^{x}+2$
4) $y=-\frac{3}{4}(6)^{x+1}$

x								x							
y								y							

Graphing Exponentials Practice

1) $y=4\left(\frac{1}{2}\right)^{x}$

2) $y=-3(2)^{x+2}$

3) $y=\frac{1}{4} \cdot 3^{x}$

4) $y=5 \cdot 2^{x-1}$

5) $y=4 \cdot 2^{x}+2$

6) $y=2\left(\frac{1}{2}\right)^{x-2}-2$

7) $y=3(2)^{x}-1$

Characteristics of Exponential Functions
Y-Intercepts and Asymptotes

Y-Intercept					
Define: Point where the graph crosses the y-axis	Think: At what coordinate point does the graph cross the y-axis?	Write: *look at graph or plug in 0 for x*			
Asymptotes					
Define:	Define:				
A line that the graph get					
closer and closer to, but					
never touches or crosses.				\quad	A line that the graph get
:---:					
closer and closer to, but					
never touches or crosses.	\quad	A line that the graph get			
:---:					
closer and closer to, but					
never touches or crosses.					

Y-intercept:
Asymptote:

Y-intercept:
Asymptote:

Y-intercept:
Asymptote:

Y-intercept:
Asymptote:

Domain and Range

Domain:
Range:

Domain:
Range:

