Characteristics - Domain and Range -		
Domain		
Define: All possible values of x	Think: How far left to right does the graph go?	Write: [\#, \#]
Range		
Define: All possible values of y	Think: How far down to how far up does the graph go?	Write: [\#, \#]

Domain:
Range:

Domain:

Range:

Domain:
Range:

Domain:
Range:

- zeros and intercepts -

Y-Intercept			
Define: Point where the graph crosses the y-axis	Think: At what coordinate point does the graph cross the y-axis?	Write: (0, b)	
Define: Point where the graph crosses the x-axis	Think: At what coordinate point does the graph cross the x-axis?	Write: (a, 0)	
Zero			
Where the function (y-value) equals 0	Think: At what x-value does the graph cross the x-axis?	Write:	

Y-Intercept:
X-Intercept(s):

Zero(s):

Y-Intercept:
X-Intercept(s):
Zero(s):

Y-Intercept:
X-Intercept(s):
Zero(s):

Y-Intercept:
X-Intercept(s):
Zero(s):

- vertex and axis of symmetry -

Vertex			
Define: Highest or lowest point or peak of a parabola	Think: What is my highest or lowest point on my graph?	Name the point (h,k)	
Axis of Symmetry			
Define: The vertical line that divides the parabola into mirror images and runs through the vertexWhat imaginary, vertical line would make the parabola symmetrical?	Write:		
(x value of the vertex)			

Vertex:
Axis of Symmetry:

Vertex:

Axis of Symmetry:

Vertex:
Axis of Symmetry:

Vertex:

Axis of Symmetry:

- extrema-			
Define: Highest point or peak of a function.	Think: What is my highest point on my graph?	Write: $y=k$	
Minimum			
Devalue of the vertex)			

Extrema:
Extrema:

Extrema:
Extrema:

Define:

Behavior of the ends of the function (what happens to the y-values or $f(x)$) as x approaches positive or negative infinity. The arrows indicate the function goes on forever so we want to know where those ends go.

Think:
As x goes to the left (negative infinity), what direction does the left arrow go?

Think:
As x goes to the right (positive infinity), what direction does the right arrow go?

Write:
As $x \rightarrow-\infty, f(x) \rightarrow$

Write:
As $x \rightarrow \infty, f(x) \rightarrow$ \qquad

As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad As $x \rightarrow \infty, f(x) \rightarrow$ \qquad
As $x \rightarrow \infty, f(x) \rightarrow$ \qquad As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad

As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad
As $x \rightarrow \infty, f(x) \rightarrow$ \qquad
As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad
As $x \rightarrow \infty, f(x) \rightarrow$ \qquad

- interval of increase and decrease -

Interval of Increase

Interval of Increase		
Define: The part of the graph that is rising as you read left to right.	Think: From left to right, is my graph going up?	Write: Interval of Decrease Ileft, Iight] of portion going up
Define: The part of the graph that is falling as you read from left to right.From left to right, is my graph going down?	Write: [left, right] of portion going down	

Interval of Increase:
Interval of Decrease:

Interval of Decrease:
Interval of Increase:

Interval of Increase:
Interval of Decrease:

Interval of Decrease:
Interval of Increase:

Identify the listed characteristics for the following graph.

Y-Intercept:

Interval of Increase:

As $x \rightarrow \infty, f(x) \rightarrow$ \qquad

Average Rate of Change Notes

Average Rate of Change (AROC): The change in the value of a quantity divided by the elapsed time. For a function, this is the change in the y-value divided by the change in the x -value for two distinct points on the graph.

$$
\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Finding AROC from a graph.

Using the problem, find the two points for which you are trying to find the average rate of change between. Then, use the formula to find the AROC.

Find the AROC of the interval $[-4,-1]$.

Find the AROC between $x=1$ and $x=5$.

Finding AROC from a graph.

Using the problem, plug in the two x-values (one at a time) to find the two points for which you are trying to find the average rate of change between. Then, use the formula to find the AROC.

Given $y=(x-2)^{2}+6$, find the average rate of change between $x=-3$ and $x=2$.

Given $y=-4 x^{2}+6 x+11$, find the AROC of the interval $[0,5]$.

Average Rate of Change Practice

1) Find the average rate of change over the interval $[-1,3]$.

2) Find the average rate of change over the interval $-3 \leq x \leq 2$.

3) Using the equation $y=-4(x+2)^{2}-6$, find the average rate of change from $x=-2$ to $x=1$.
4) Using the equation $y=-x^{2}-6 x+2$, find the average rate of change for the interval $[-6,-2]$.

Characteristics Practice

Domain:

Range:
Int. of Increase:
Int. of Decrease:
Max/Min:
Extrema Value:
Zeros:
Y-Int:
X-Int:
As $x \rightarrow \infty, f(x) \rightarrow$ \qquad
As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad
Vertex:
Axis of Symmetry:

Vertex:

X-Int:
Int. of Decrease:
Zeros:
Range:
As $x \rightarrow-\infty, f(x) \rightarrow$
Max/min:
Axis of Sym:
Domain:
Y-Int:
As $x \rightarrow \infty, f(x) \rightarrow$ \qquad
Int. of Increase:
Int. of Constant:

Draw a graph that has the following characteristics:

- Vertex at $(3,4)$
- End behavior of as $x \rightarrow-\infty, f(x) \rightarrow-\infty$
- Two zeros
- A y-intercept of ($0,-2$)
- A domain of $(-\infty, \infty)$

Then, identify the following:
Axis of Symmetry:
Range:
Interval of Increase:
Interval of Decrease:

