Solving Quadratics by Square Roots

Without using a calculator, see how many of the first 12 perfect squares you can name.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Simplifying Non-Perfect Squares: Find a perfect square that goes into the radicand, break into 2 radicals, and simply. Repeat if possible.
$\sqrt{12}$
$\sqrt{20}$
$\sqrt{30}$
$\sqrt{75}$

Taking the Square Root: Using your calculator, calculate the following.
$(-8)^{2}=$
$(8)^{2}=$
$(5)^{2}=$
$(-5)^{2}=$

Without using your calculator, take the square root of the following integers. 16 49100

12
1

We are going to use this information to help us solve quadratic equations by taking the square root.

When solving by square roots, you want to:
(1) \qquad
\qquad
(2) \qquad
\qquad
(3) \qquad
(4) \qquad

Steps: Isolate whatever is being squared, square root both sides (include +/- and break into two equations), simplify the radicals if possible, solve for x

1) $3 x^{2}+7=55$
2) $(x-7)^{2}=81$
3) $x^{2}-16=0$
4) $-3 x^{2}-6=-x^{2}-12$
5) $(x+1)^{2}=50$
6) $4 x^{2}-9=0$
7) $-7(x-10)^{2}-6=-258$
8) $(x+3)^{2}-20=7$

Solving Quadratics by Square Roots - Practice

 For each of the following questions, find the roots.1) $x^{2}=25$
2) $2 x^{2}=98$
3) $x^{2}-1=0$
4) $9 x^{2}-16=0$
5) $x^{2}+9=25$
6) $4(x-2)^{2}=100$
7) $(x-2)^{2}+9=25$
8) $(4 x-2)^{2}+9=25$
