Solving Quadratics by Square Roots

Without using a calculator, see how many of the first 12 perfect squares you can name.

Simplifying Non-Perfect Squares: Find a perfect square that goes into the radicand,
break into 2 radicals, and simply. Repeat if possible. $\sqrt{12}$ $\sqrt{20}$ $\sqrt{30}$ $\sqrt{75}$

Taking the Square Root: Using your calculator, calculate the following.

 $(-8)^2 = (8)^2 = (-5)^2 =$

Without using your calculator, take the square root of the following integers.

16 49 100 12 1

We are going to use this information to help us solve quadratic equations by taking the square root.

When solving by square roots, you want to:

0		
2		
3		
④		

Steps: Isolate whatever is being squared, square root both sides (include +/- and break into two equations), simplify the radicals if possible, solve for x

1) $3x^2 + 7 = 55$ 2) $(x - 7)^2 = 81$

3) $x^2 - 16 = 0$ 4) $-3x^2 - 6 = -x^2 - 12$

7) $-7(x-10)^2 - 6 = -258$

8) $(x+3)^2 - 20 = 7$

Solving Quadratics by Square Roots – Practice

For each of the following questions, find the roots.

1)
$$x^2 = 25$$
 2) $2x^2 = 98$

3)
$$x^2 - 1 = 0$$
 4) $9x^2 - 16 = 0$

5)
$$x^2 + 9 = 25$$
 6) $4(x - 2)^2 = 100$

7)
$$(x-2)^2 + 9 = 25$$

8) $(4x-2)^2 + 9 = 25$