Diamond Math Problems

Complete the diamond problems. The top cell contains the product of the numbers in the left and right cells, while the bottom contains the sum.
(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(12)

(13)

(14)

(15)

(16)

Factoring Trinomials

Example: $x^{2}-4 x-32$

Steps (written out)	Steps (worked out)	
1) Multiply a and c together. Place that		
number in the bottom of the x.		
Place b in the top of the x.		
Find two numbers that multiply to get the		
bottom number and add to get the top		
number.		

Example: $5 v^{2}+27 v+10$

| Steps (written out) | Steps (worked out) | |
| :--- | :--- | :--- | :--- |
| 1) Multiply a and c together. Place that | | |
| number in the bottom of the x. | | |
| Place b in the top of the x. | | |
| Find two numbers that multiply to get the | | |
| bottom number and add to get the top | | |
| number. | | |

1) $3 x^{2}+8 x+5$
2) $4 a^{2}-a-5$
3) $4 x^{2}-11 x+6$
4) $3 x^{2}+17 x+10$
5) $6 x^{2}-5 x-1$
6) $2 m^{2}+5 m+2$
7) $6 m^{2}-11 m-10$
8) $4 v^{2}-v-14$

Factoring - Special Cases

When factoring quadratics, there are two types of special cases.
Difference of Two Squares $\quad\left(x^{2}-a^{2}\right)=(x+a)(x-a)$
Perfect Square Trinomials $\quad\left((a x)^{2}+2 a b x+b^{2}\right)=(a x+b)^{2}$
$\left((a x)^{2}-2 a b x+b^{2}\right)=(a x-b)^{2}$
When factoring quadratics that are special cases, you can still factor in the same way that we have previously done. The only difference is that you may have to add a 0 term in your expression or change the way you write final answer.

1) $x^{2}+12 x+36$
2) $x^{2}-9$
3) $4 x^{2}-25$
4) $4 x^{2}-16 x+16$
5) $x^{2}+20 x+100$
6) $9 x^{2}-16 y^{2}$
