The equation of line a is $y = (-\frac{1}{2})x - 2$.

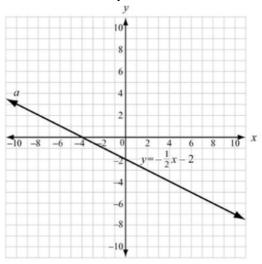
Which is an equation of the line that is perpendicular to line a and passes through

recipolate the point (-4, 0)?

$$A.y = -\frac{1}{2}x + 2$$
$$B.y = -\frac{1}{2}x + 8$$

$$C.y = 2x - 2$$

$$D.y = 2x + 8$$


$$B.y = -\frac{1}{2}x + 8$$

$$C.y = 2x - 2$$

$$D.y = 2x + 8$$

$$y = 2x + 6$$

$$0 = 2x + 6$$

Independent Events

- Two events A and B, are independent if the fact that A occurs <u>Does</u> <u>Not</u> affect the probability of B occurring.
 - EX 1. Landing on heads from two different coins;
 - EX 2. rolling a 4 on a die, then rolling a 3 on a second roll of the die.

Probability of A and B occurring:

$$P(A \text{ and } B) = P(A) \cdot P(B)$$

A coin is tossed, and a 6-sided die is rolled. Find the probability of landing on the head side of the coin and rolling a 3 on the die.

head 22 total tail 3 =P (head) = \frac{1}{2}

■P(3)= \/\c

 \blacksquare P (head and 3)=P (head) \bullet P(3)

$$= \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} \begin{pmatrix} \frac{7}{2} \\ \frac{1}{2} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$$
or $0.0\%3$

A card is chosen at random from a deck of 52 cards. It is then replaced and a second card is chosen. What is the probability of choosing a jack and an eight?

P (jack)=
$$\frac{4}{52}$$

P (8)= $\frac{4}{52}$

P (jack and 8)= $(\frac{4}{52})(\frac{4}{52})$

= $\frac{16}{2704} = \frac{1}{169}$ or .0059

A jar contains three red, five green, two blue and six yellow marbles. A marble is chosen at random from the jar. After replacing it a second marble is chosen. What is the probability of choosing a green and a yellow marble?

Proving =
$$\frac{5}{16}$$

Proving = $\frac{5}{16}$

Proving = $\frac{30}{256} = \frac{15}{128}$ or 0,1171

Proving = $\frac{5}{16}$

• A school survey found that 9 out of 10 P(rizza): 10 students like pizza. If three students are chosen at random with replacement, what is the probability that all three students like pizza?

Dependent Events

- Two events A and B, are dependent if the fact that A occurs <u>Joes</u> affect the probability of B occurring.
- Example: Picking a card from a deck of cards and then picking another card without replacing the first one.

(Probability of A and B occurring:

() () () Probability of A and B occurring:

() () () Probability of A and B occurring:

() () () Probability of A and B occurring:

7

• A jar contains three red, five green, two blue and six yellow marbles. A marble is chosen at random from the jar. A second marble is chosen without replacing the first one. What is the probability of choosing a green and a yellow marble?

An aquarium contains 6 male goldfish and 4 female goldfish. You randomly select a fish from the tank, do not replace it, and then randomly select a second fish. What is the probability that both fish are male?

lototal take 1 9 wit

$$P(M \cap M) = P(male) \cdot P(male) drew another mele)$$

$$= \left(\frac{6}{10}\right) \left(\frac{5}{9}\right)$$

$$= \frac{30}{90} = \frac{1}{3} \text{ or } .33$$

A random sample of parts coming off a machine is done by an inspector. He found that 5 out of 100 parts are bad on average. If he were to do a new sample, what is the probability that he picks a bad part and then, picks another bad part if he doesn't replace the first?

Independent vs. Dependent

Determining if 2 events are independent

Independent Events

• Two events are independent if any of the following are true:

 To prove 2 events are independent, you must show one of the above statements is true.

- Let event G = taking a math class.
- Let event H = taking a science class.
- Then, G AND H = taking a math class and a science class.

If P(G) = 0.6, P(H) = 0.5, and P(G AND H) = 0.3, are G and H independent? P(G and H) = P(G) P(H) $\vdots \qquad \vdots \qquad \vdots \qquad \vdots$ Yes, they are independent!

- In a specific college class:

 60% of the students are female.

 60% of all students in the class have long hair.

 45% of the students are female and have long hair.

 Of the female students, 75% have long hair.

Are the events of being female and having long hair independent? $P(F \cap L) = P(F) \cdot P(L)$?

Experiment 2: Another Approach

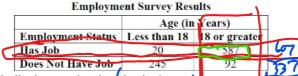
- If they <u>are independent</u>,
 P(L|F) should equal P(L).
- P(L|F)=.75
- P(L)= .5

.75 £ .5

having long hair sing . separation this singe.

GSE Geometry Name	Unit 6 Probability Date:	Day 7
Case. P(A). P(A) = 1. P(A) = 2. P(A) = 3. P(A) =	nition of independence, determine if events A of (2) (14) = $.028 = P(A \cap B)$ = 0.2 $P(B) = 0.14$ $P(A \cap B) = 0.028$ = 0.32 $P(B) = 0.16$ $P(A \cap B) = 0.48$ = $\frac{1}{3}$ $P(B) = \frac{3}{5}$ $P(A \cap B) = \frac{4}{15}$ = $\frac{7}{8}$ $P(B) = \frac{2}{5}$ $P(A \cap B) = \frac{7}{20}$	P(AAB) = RAP(B)

Paola is playing a word game in which she draws letter tiles from a bag without looking. The bag contains 7 tiles: 2 As, 3 Es, and 2 Rs.


Find the probability of getting an E first and getting an E second. In each problem, state whether the events are independent, and find the probabilities.

- ______ 5. Paola takes a tile, then replaces it, and then takes a second tile.
- _____ 6. Paola takes a tile, does not replace it, and then takes a second tile.

P(E and then to

7. Employment Survey. A random survey was conducted to gather information about age and employment status.

This table shows the data that were collected.

What is the probability that a randomly selected person is less than 18 years old?

b) What is the probability that a randomly selected person surveyed has a job, given that the person is greater than or equal to 18 years old?

c) Are having a job (A) and being 18 or greater (B) independent events? Explain.

- 8. In a certain town, the probability that a person plays sports is 65%. The probability that a person is between the ages of 12 and 18 is 40%. The probability that a person plays sports and is between the ages of 12 and 18 is 25%. Are the events independent? How do you know?
- 9. The probability of playing basketball is 12%, and the probability of playing both basketball and football is 5%. Find the probability of a person playing football, given they play basketball.

GSE Geometry		Unit 6 Probability				Day 7	
Using the letters in the	state ARKA	ANSAS:					_
10.Find the p	orobability (of pickir	ng an S an	d then an	A without	t replacement.	
11.Find the p	orobability (of pickir	ng a K and	then a N	without re	eplacement.	
don't kno		ers for t				vith 5 choices. Suppose you ou guess. What is the probabil	ity
The following chart sh	ows favorit	e subje	cts of stude	ents based	on their (gender.	
		Math	Science	English	History		
	Male	46	42	13	25		
	Female	12	21	45	36		
13. What is th	•					kes history the most? s a female?	
15. What is the	ne probabi	lity that	a random	ly chosen :	student is	a male <u>or</u> likes Math?	
16. What is the	ne probabi	lity that	a random	ly chosen :	student b	ooth likes science <u>and</u> is a mal	e
17. What is the female?	ne probabi	lity that	a random	ly chosen :	student lik	kes history <u>given</u> that they are	a
	probability Use calculo		g a subjec	t depend	on wheth	ner the students are male or	