Compound Probability

- A compound event \qquad combines two or more events using the word
\qquad or the word $O R(t)$.
- Compound events can be Mutually exclusive or they can be overlapping
\qquad ((5 S ${ }^{2}$
Mutually Exclusive
- Two or more events that \qquad cannot simple light switch
- They have NO common outcomes.
- Formula: $P(A$ or $B)=P(A)+P(B) \quad P(A \cup B)=P(A)+P(B)$

Overlapping \qquad happen at the same time. ex. $10^{\text {th }}$ irate ${ }^{2}$ studaty withcaty

- Two or more events that
 one common outcome.
- They haveat least
- Formula:

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

subtract the overlap!
Example 1: When rolling two dice find the probability that the dice will add up to 4 (OD to
5. mutually exclusive

- $P($ sum 4 or sum 5)

$$
P(+4)+P(+5)=\frac{3}{36}+\frac{4}{36}=3 / 36
$$

Example 2: Using the chart

- Find the probability that a girl from this survey has responded that either Macy's or Nordstrom is her favorite store.

$$
f(M \cup N)=.25+.20=1.45
$$

- Find the probability that a girl from this survey has responded that her favorite store is not JC Penny's.

$$
P(J)=P(J)=1-.10=\sqrt{90}
$$

Macy's	0.25
Saks	0.20
Nordstrom	0.20
JC Penny's	0.10
Bloomingdale's	0.25

Example 3: Deck of cards

- Find the probability of drawing a Queen or an Ace. P(Queen or Ace) $52+\frac{52}{52}=\frac{2}{13}$ mutually exclusive $\left[\frac{2}{13}\right]$

Example 4: Using the Venn Diagram

- A are coffee drinkers and B are soda drinkers, find the , Se tapir probability that a person from the survey will drink coffee 8 \rightarrow soda. $P(A \cup B)=P(A) \cup P(B)-P(A \cap 1 B)=\frac{43}{151}+\frac{37}{151}-\frac{12}{151}=\frac{68}{151}$ What is the total sample space? Hownany people drink coffee? 151 total 43 coffle
How many drink soda? How many drink goth?

$$
37 \text { yoda }
$$

Example 5: Using the Venn Diagram and Probability Notation

- Find the $P(A \cup B)=P(A)+P(B)-P(A \cap B)$

$$
\frac{195}{1200}+\frac{565}{126} \sim \frac{35}{1200}=\frac{725}{1200}=\frac{29}{48}
$$

- If A is band members and B is club members, what
 does the above answer meant 29 randomly choosing a sta dent from Lew.'s HS 48 who is in Band, a club, or both. Example 6: Deck of Cards
- Find the P(Kingor)Club)

$$
\begin{aligned}
& \text { Deck of Cards } \\
& \text { e P(King orlClyb) } \\
& P(K \cup C)=P(K)+P(C)-P\left(K_{\wedge} C\right)=\frac{4}{52}+\frac{13}{52} \sim \frac{1}{52}=\frac{16}{52}=\frac{4}{13}
\end{aligned}
$$

Example 7: From a frequency table

- Find the P (picking a Female or a person from

Florida)
Total the columns and rows first

$$
\frac{25}{31} \text { or } 81 \text { or } 81 \%
$$

	Female	Male	
FL	8	4	12
AL	6	3	9
GA	7	3	10
	21	10	31

Example 8: Rolling two dice

- Find the P (an even sum or a sum greater than 19)

$$
\frac{18}{36}+\frac{3}{36}-\frac{1}{36}=\frac{20}{36}=\frac{5}{9}
$$

Example 9: Using the Lewis High school chart from example 5

- Find $P(A \cup B)^{\prime}$

$$
P(\overline{A \cup B})
$$

Example 10: Complementary events

- What is the probability that a female does not play volleyball?
- Group A represents volleyball players and Group B represents softball players.

$$
\frac{428}{454}=\frac{214}{227}
$$

Females at Local High School

\qquad Date: \qquad

Mutually Exclusive Practice

1. Determine if the following events are mutually exclusive or overlapping.
a. The experiment is rolling a die.

The 1 st event: the number is greater than 3 The and event: the number is even.

b. The experiment is year in school.

The 1 st event: the person is a senior. The 2 nd event: the person is a junior.

c. The experiment is answering multiple choice questions.

The 1st event: the correct answer is chosen
The 2nd event: the answer A is chosen.
d. The experiment is selecting a chocolate bar.

The list event: the bar has nuts
The ind event: the bar has caramel.
2. One card is randomly drawn from a deck of 52 cards. The card is face down on the table. What is the probability of getting a Jack or a Spade?
3. Dice. Use the general addition rule to compute the probability that if you roll two six-sided dice.
a) you get doubles or a sum of 4
b) you get doubles or a sum of 7
c) you get a 5 on the first die or you get a 5 on the second die.
4. When you arrive home today, you find 27 cupcakes in a large circular plate. There are 13 that have icing, 11 have sprinkles, and 4 have both.
a) $P(I)$ \qquad b) $P(S)$ \qquad
c) $P(I \cup S)$ \qquad
d) $P(I \cap S)$ \qquad

5. Swim and whistle. Suppose 80% of people can swim. Suppose 70% of people can whistle. Suppose 55% of people can do both. What percentage of people can swim or whistle?

GSE Geometry
Unit 6 - Probability
6. Use the data below to find each of the following probabilities.

Coolest Deals Sold at Ike's

Topping choice	Ice cream choice			
	Vanilla	Chocolate	Cookie dough	Mint chip
Sprinkles	9	12	16	14
Hot fudge	11	4	16	15
Caramel	10	12	18	15

a) P(Chocolate) \qquad b) P(Chocolate)' \qquad
c) $P($ Sprinkles \cap Cookie Dough $)$ \qquad d) P(Caramel \cup Vanilla) \qquad
7. Mr. Leary's Class. Use the Venn Diagram showing the number of kids owning bicycles (A) and skateboards (B) to find the following probabilities.
a) $P(A \cap B)$. What does this probability represent?
b) $P(A \cup B)$. What does this probability represent?
c) $P(A \cup B)^{\prime}$. What does this probability represent?
Bicycle
8. Sports Teams. A group of 60 students were asked if they played field hockey (F), basketball (B) or soccer (S). The diagram below displays the results. Use the information given to find the following probabilities.
a) $P(B \cap S)$
b) $P(F \cup B)$
c) $P(F)^{\prime}$
d) $P(F \cup B \cup S)$
e) $P(F \cup B \cup S)^{\prime}$

9. Backpack and wallets. At Harrison, 60% of the students carry a backpack or a wallet. 40% carry only a backpack, and 30% carry only a wallet. If a student is selected at random, find the probability that the student carries both a backpack and a wallet.

