The Counting Principle

You are ordering an ice cream float. You will choose a flavor of ice cream and a flavor of soda. The choices are:

ICE CREAM: vanilla, chocolate (2)
SODA: cola, root beer, orange, strawberry (4)
How many different ways could you order in your float?

$$
2 \cdot 4=8
$$

This scenario describes \qquad independent events, in which the outcome of one event does not affect the outcome of the other. If event M can occur in m ways, and event N can occur in n ways, then event M followed by event N can occur in \qquad NoM ways. You simply \qquad Multiply y the number of choices, or possible outcomes, for each event to find the total number of possible outcomes. This is called the

You have five shirts: plaid, red, striped, orange and Hawaiian print. You have three pair of pants: blue, green and khaki. Use a tree diagram to determine how many ways you could make an outfit, consisting pants and a shirt.

$$
5.3=15 \text { combinations }
$$

Younalnt to to sext à a 4 -digit passgode on your cell phone. How many different ways could you choose your passcode?

$$
\begin{array}{r}
0-9 \\
10
\end{array} 10 \cdot 10 \cdot 10=10,000 \text { possible codes }
$$

2 Your little sister likes even numbers. Using flashcards numberedo-9, how many 2-digit even
numbers contd you create?

$$
\frac{8}{x=1} 5
$$

You plan to spend your day completing a chore, eating lunch out and then doing a fun activity. Your chores could be sweeping the house or washing the dog. Nearby restaurants are Bob's Burgers, Sally's Salads, Paula's Pizzeria and Wally's Wings. Your activity choices are a movie, bowling, mini golf or the trampoline park. How many different ways could you spend your day?

Sometimes the outcome of one event affects the outcome of another event. In this case, those events are said to be eppndent events. The Fundamental Counting Principle still applies, and we will
\qquad
multiply t the number of possible outcomes, or choices, for each event.

You are guessing the answer on your state assessment. You are asked to drag and drop from a box containing the digit $1,2,3,5$, and 7 no 4 answer blanks. How many ways could you submit your answer?

Notice that once you have chosen an option from the box, it is not available as a choice for the next answer blank. The outcome of the first event (blank 1) left you with fewer choices for the next event (blank 2), and so on. These events are \qquad depends at events.

You are going to hang three pictures in a row on the wall. In how many ways can you arrange them?

You are planning to run six errands today. In how many ways could they be ordered?

$$
6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=7720 \mathrm{Ways}
$$

Your teacher asks for three volunteers to work problems on the board. There are 21 students in the class. In how many different ways could the student volunteers be chosen?

$$
21.20 \cdot 19=7980 \mathrm{Nms}
$$

You and four other classmates walk into the office and sit down in a row of five chairs. In how many ways could you be ordered?

$$
5 \cdot 4 \cdot 3.2+120 \text { ways }
$$

Create a scenario describing independent events. Then determine the number of possible outcomes for the events.
fl av or sod Soda (oxidic)

Now, create a scenario describing dependent events. Then determine the number of possible outcomes for the events.
4 foo then player in locker room
with 5 helmets.
How Mary way then put on hel ret

