Two Column Proof

- A Two Column Proof is just a way to organize an argument. On the left side of the table, we put true \qquad , and on the right side, we put the
\qquad
\qquad for that statement.
- Each line of the proof is one of the \qquad we take towards proving our argument.
- The \qquad that we use might be given in the problem, a definition, postulate, or theorem.

	Reasons/Justification		
If something is marked in the diagram, or in the given information....			
If you see that the triangles are sharing a side....			
If you see parallel lines...			
•			If you see vertical angles....
:---			
When you write a congruence statement for two triangles...			
If the proof involves triangles, but is asking you to prove a pair of side or angles for you final answer.....			

Let's review some definitions, and how we can use them in two column proof.
Example 1: Prove that the length of $\overline{B C}=7$
Given: $\overline{A B}=7$, and B is the midpoint of $\overline{A C}$.

- The Midpoint of a segment \qquad the segment into two \qquad pieces.

Statements	Reasons/Justification
1. $\overline{A B}=7$	
2. B is the midpoint of $\overline{A C}$.	
3. $\overline{A B} \cong \overline{B C}$	
4. $\overline{B C}=7$	Transitive Property of Equality

Now, lets see how it works with Triangles.
Example 2: Given: B is the midpoint of $\overline{A E}, \angle A \cong \angle E$

PROVE: $\triangle A B C \cong \triangle E B D$

Statements	Reasons/Justifications
1. B is the Midpoint of $\overline{A E}$	
2.	Definition of Midpoint
3. $\angle A \cong \angle E$	
4.	Vertical Angles are congruent
5. $\triangle A B C \cong \triangle E B D$	

Example 3: Let's look at how parallel lines can help us with a proof.

Given: $\overline{C B} \cong \overline{B A}, \overline{C D} \cong \overline{B E}, \overline{C D} \| \overline{B E}$

PROVE: $\triangle A B E \cong \triangle B C D$

Statements	Reasons/Justifications	
1. $\overline{C B} \cong \overline{B A}$		
2. $\overline{C D} \cong \overline{B E}$		
3. $\overline{C D} \\| \overline{B E}$		
4.	Corresponding Angles are Congruent	
5. $\triangle A B E \cong \triangle B C D$		

Example 4: Reminder... Which Property do we use when triangles share a side?

Given: $\overline{A B} \cong \overline{C B}, D$ is the midpoint of $\overline{A C}$.
PROVE: $\triangle A D B \cong \triangle C D B$

Statements	Reasons/Justifications
1. $\overline{A B} \cong \overline{C B}$	
2. D is the midpoint of $\overline{A C}$	
3.	Definition of Midpoint
4. $\overline{B D} \cong \overline{B D}$	
5. $\triangle A D B \cong \triangle C D B$	

Example 6: Recall, an angle bisector divides one angle into
\qquad congruent \qquad .

Given: $\angle A \cong \angle C$, and $\overline{D B}$ is bisecting $\angle A B C$.
PROVE: $\triangle D A B \cong \triangle D C B$

Statements	Reasons/Justifications
1.	Given
2.	Given
$3 . \angle A B D \cong \angle C B D$	Definition of
4. $\overline{B D} \cong \overline{B D}$	
5. $\triangle D A B \cong \triangle D C B$	

7. You Try!

Given: $\overline{w x} \cong \overline{y z}$, and $\overline{w x} \| \overline{y z}$

PROVE: $\triangle u X Z \cong \triangle y Z X$

Statements	Reasons/Justifications	
1.	Given	
2. $\overline{w x} \\| \overline{y z}$		
3.	Alternate Interior Angles are Congruent	
4. $\overline{x z} \cong \overline{x z}$		
5. $\Delta w X Z \cong \Delta y z x$		

Lets talk about right triangles!
QUICK QUIE....
8. True or False: Hypotenuse leg is the only theorem/postulate that can be used to show that two right triangles are congruent. \qquad
9. Recall, if two lines are \qquad to each other then they intersect to form a right angle.

Let's look at a proof that uses this property!
Given: $\overline{A B} \perp \overline{C D}, \overline{C B} \cong \overline{D B}$

PROVE: $\triangle A B C \cong \triangle A B D$

Statements	Reasons/Justifications
1. $\overline{C B} \cong \overline{\triangle D}$	
2.	Given
$3 . \angle A B C$ and $\angle A B D$ are 90°	Definition of
4.	ALL Right Angles are Congruent
5.	
$6 . \triangle A B C \cong \triangle A B D$	

** When using SSS, SAS, ASA, or AAS for right triangles, we must state that our 90° angles are congruent**
HL Proofs are a little bit different! Lets take a look.
Quick Question...What is the only kind of triangle that we can use HL on? \qquad
So as we are writing our proof, we will need a statement and a justification that what we are working with is actually a right triangle.

Example 10:

Given: $\overline{A B} \perp \overline{C D}, \overline{C B} \cong \overline{D A}, \overline{C E} \cong \overline{D E}$
PROVE: $\triangle E C B \cong \triangle E D A$

Statements	Reasons/Justifications
1. $\overline{C B} \cong \overline{D A}$	
2.	Given
$3 . \overline{A B} \perp \overline{C D}$	
$4 . \quad$ Definition of Perpendicular	
5. $\triangle E C B$ and ___ are 90°	
$6 . \triangle E C B \cong \triangle E D A$	

