Two Column Proof

- A Two Column Proof is just a way to organize an argument. On the left side of the table, we put true _____, and on the right side, we put the ______ for that statement.
- Each line of the proof is one of the _____ we take towards proving our argument.
- The ______ that we use might be given in the problem, a definition, postulate, or theorem.

	Reasons/Justification
If something is marked in the diagram,	
or in the given information	
If you see that the triangles are	
sharing a side	
If you see parallel lines	
•	
•	
If you see vertical angles	
When you write a congruence statement	
for two triangles	
If the proof involves triangles, but is	
asking you to prove a pair of side or	
angles for you final answer	

Let's review some definitions, and how we can use them in two column proof.

Example 1: Prove that the length of $\overline{BC} = 7$

Given: $\overline{AB} = 7$, and B is the midpoint of \overline{AC} .

The **Midpoint** of a segment ______ the segment into two ______ pieces.

Statements	Reasons/Justification
1. $\overline{AB} = 7$	
2. B is the midpoint of \overline{AC} .	
3. $\overline{AB} \cong \overline{BC}$	
4. $\overline{BC} = 7$	Transitive Property of Equality

Now, lets see how it works with Triangles.

Example 2: Given: B is the midpoint of \overline{AE} , $\angle A \cong \angle E$

A B B E

PROVE: $\triangle ABC \cong \triangle EBD$

Statements	Reasons/Justifications
1. B is the Midpoint of \overline{AE}	
2.	Definition of Midpoint
3. $\angle A \cong \angle E$	
4.	Vertical Angles are congruent
5. $\triangle ABC \cong \triangle EBD$	

Example 3: Let's look at how parallel lines can	
help us with a proof.	

Given: $\overline{CB} \cong \overline{BA}$, $\overline{CD} \cong \overline{BE}$, $\overline{CD} || \overline{BE}$

 $\textbf{PROVE: } \triangle \textit{ABE} \cong \triangle \textit{BCD}$

Statements	Reasons/Justifications
1. $\overline{CB} \cong \overline{BA}$	
2. $\overline{CD} \cong \overline{BE}$	
3. CD BE	
4.	Corresponding Angles are Congruent
5. $\triangle ABE \cong \triangle BCD$	

<u>Example 4</u> :	ReminderWhich	Property de	o we use	when triangles
share a side	?			

Given: $\overline{AB} \cong \overline{CB}$, D is the midpoint of \overline{AC} .

PROVE: $\triangle ADB \cong \triangle CDB$

Statements	Reasons/Justifications
1. $\overline{AB} \cong \overline{CB}$	
2. D is the midpoint of \overline{AC}	
3.	Definition of Midpoint
4. $\overline{BD} \cong \overline{BD}$	
5. $\triangle ADB \cong \triangle CDB$	

Example 6: Recall, an **angle bisector** divides one angle into _____ congruent _____.

Given: $\angle A \cong \angle C$, and \overline{DB} is bisecting $\angle ABC$.

 $\underline{\mathsf{PROVE:}} \ \mathsf{ADAB} \cong \mathsf{ADCB}$

Statements	Reasons/Justifications
1.	Given
2.	Given
3. $\angle ABD \cong \angle CBD$	Definition of
4. $\overline{BD} \cong \overline{BD}$	
5. $\triangle DAB \cong \triangle DCB$	

7. You Try!

Given: $\overline{WX} \cong \overline{YZ}$, and $\overline{WX} || \overline{YZ}$

PROVE: $\triangle WXZ \cong \triangle YZX$

Statements	Reasons/Justifications
1.	Given
2. $\overline{WX} \overline{YZ}$	
3.	Alternate Interior Angles are Congruent
4. $\overline{XZ} \cong \overline{XZ}$	
5. $\Delta W X Z \cong \Delta Y Z X$	

Lets talk about right triangles!

QUICK QUIZ

8. True or False: Hypotenuse leg is the only theorem/postulate that can be	used to
show that two right triangles are congruent	

9. Recall, if two lines are ______ to each other then they intersect to form a right angle. \bigwedge^{A}

Let's look at a proof that uses this property!

Given: $\overline{AB} \perp \overline{CD}$, $\overline{CB} \cong \overline{DB}$

PROVE: ABC = ABD

Statements	Reasons/Justifications	
1. $\overline{CB} \cong \overline{DB}$		
2.	Given	
3. LABC and LABD are 90°	Definition of	
4.	ALL Right Angles are Congruent	
5.		
$(\boldsymbol{\varphi}, \triangle ABC \cong \triangle ABD$		

** When using SSS, SAS, ASA, or AAS for right triangles, we must state that our 90° angles are congruent**

HL Proofs are a little bit different! Lets take a look.

Quick Question ... What is the only kind of triangle that we can use HL on?

So as we are writing our proof, we will need a statement and a justification that what we are working with is actually a right triangle. A

Example 10:

Given: $\overline{AB} \perp \overline{CD}$, $\overline{CB} \cong \overline{DA}$, $\overline{CE} \cong \overline{DE}$

PROVE: △ECB ≅△EDA

Statements	Reasons/Justifications
1. $\overline{CB} \cong \overline{DA}$	
2.	Given
$3.\overline{AB} \perp \overline{CD}$	
4 and are 90°	Definition of Perpendicular
5. $\triangle ECB$ and $\triangle EDA$ are right triangles.	
ϕ . △ECB ≅△EDA	