The diagram shows a circle with center \bigcirc and radius 10 cm . A and B are points on the circumference such that $\widehat{A B}$ makes an angle of 150° at O .
Calculate the area of the shaded region.
$\begin{array}{ll}\text { A. } 7,475 \mathrm{~cm}^{2} & \text { B. } 131 \mathrm{~cm}^{2}\end{array}$
C. $150 \mathrm{~cm}^{2}$
D. $106 \mathrm{~cm}^{2}$
$S f=$

I. How to Write an Equation of

 a Line Given m and $b$$$
\text { 1. Write down } y=m x+h
$$

2. Substitute s,ope for m and L_{y} - intercept for b.
3. Simplify the equation

Write the equation of the line given m and b.

Ex. 1 Slope is -5 and y-intercept is 2
$m=-5 \quad y=m x+b$
$b=2 \quad y=-5 m+2$
Ex. 2 Slope is $-1 / 2$ and y-intercept is -2
$m=-1 / 2$

Write the equation of the line given m and b.

Ex. 3 slope is and y-intercept is 3
$y=m x$
$0 x$
$y=3$
Ex. 4 Slope is $1 / 3$ and y-intercept is 0
$y=1 / 3 x$

II. How to Write an Equation

 of a Line Given a Graph1. Write down $y=m x+b$
2. Use any 2 "greod" points on the line to find the slope, m.
3. Find the y-intercept on the graph, b.
4. Substitute slope for m and y-int for b into the equation $y=m x+b$.

Ex 5. Write the equation of this graph

$$
\begin{aligned}
& m=\frac{R R E}{\operatorname{RUN}}=\frac{4}{5} \\
& b=2
\end{aligned}
$$

$$
y=m x+b
$$

$$
y=\frac{4}{5} x+2
$$

Ex 6. Write the equation of this graph.

Ex 7. Write the equation of this graph.

III. How to Write an Equation of

 a Line Given m and a point1. Write down $y=m x+(b)$.
2. Substitute slope for m and the point (x, y).
3. Solve for b

$$
y=-x+
$$ -

4. Substitute m and b back into the equation.

Write the equation of the line given m and a point
Ex $8: m=2$ Point: $(2,3)$

$$
\begin{array}{lc}
y=\sqrt{x} x+6 & y \\
y=2 x+b & y=-x+\cdots \\
3=22 \\
3=4+b & y=2 x+-1 \\
\frac{4}{-4}=6 & y=2 x-1
\end{array}
$$

Write the equation of the line given m and a point

$$
\begin{aligned}
& \text { Ex 9. } m=1 / 2 \text { Point: }(4,-3) \\
& y-(-3)=\frac{1}{2}(x-4) \quad y=m x+b \\
& y+3=\frac{1}{2} x-2 \\
& -3=\frac{1}{2}(4)+b \\
& \operatorname{lom}_{5}^{0} 5^{x} \frac{-3}{y=\frac{1}{2} x-5} \\
& -3=2+b \\
& \frac{-2-2}{-5=b}
\end{aligned}
$$

Write the equation of the line given m and a point
Ex 15: $m=-2$ Point: $(-5,3)$

$$
\begin{aligned}
& y=m x+b \\
& 3=-2(-5)+b \\
& 3=10+b \\
& -7=6
\end{aligned} \quad y=-x+\cdots
$$

IV. How to Write an Equation of a Line Given TWO points

1. Write down $y=m x+b$.
2. Use the Slope formula to find $\frac{d^{2}-x_{1}}{}$.
3. Pick one of the ordered pairs \& substitute slope for m and the point (x, y).
4. Solve for \qquad -
5. Substitute m and b into the equation.

Equation of a Line - Given 2 points
Ex: $21 \frac{(2,3)}{(4,5)} \quad \frac{y_{2}-y}{x_{2}-x_{1}}=\frac{5-3}{4-2}=\frac{2}{2}$
(1) $m=\frac{\Delta y}{\Delta x}=\frac{2}{2}=1$
(2) Plug in (x, y)

$$
\begin{aligned}
& \text { flag in }(x+9) \quad(2,3) \\
& y=M x+b \\
& 3=1(2) * b \\
& 3=2+b \\
& \frac{2}{1=-} \\
& =b
\end{aligned}
$$

Equation of a Line - Given 2 points
Ex: $22 \quad(2,3) \quad(-4,15)$

$$
6 m=\frac{y_{2}-y_{0}}{x-x_{0}}=\frac{15-3}{-4-2}=\frac{12}{-6}=-2
$$

(2)

$$
\begin{array}{lr}
y=m x+b \\
3=-2(2)+b & y=m x+b \\
3=-4+b & y=-2 x+7 \\
+4+4 & y
\end{array}
$$

