Name: \qquad Date: \qquad
Use the following to review for you test. Work the Practice Problems on a separate sheet of paper.

What you need to know \& be able to do	Things to remember	Examples	
Find the measure of parts of a chord in a circle	part • part = part • part	1. Find the value of x	2. Find the value of x
Find the measure of segments when two secants intersect a circle.	outside \cdot whole $=$ outside • whole	3. Find the value of x	4. Find the value of x.
Find the measure of segments when a secant and a tangent intersect a circle.	outside \cdot whole $=$ outside • whole	5. Find the value of x.	6. Find the value of x.
Use the properties of congruent tangents	Tangents coming from the same external point are congruent	7. Find JK.	8. Find JM.

Use the properties of congruent chords to find the measures of chords and arcs.	If two chords are congruent then their arcs are congruent	9. Find the value of KM.	10. Find the $m Y Z$ if $m X \bar{W}=95^{\circ}$.
Determine if two chords are congruent	Two chords are congruent if they are equidistant from the center of the circle	11. Are $\overline{J K}$ and $\overline{M L}$ congruent?	12. Are $\overline{T Q}$ and $\overline{U Q}$ congruent?
Use the properties of congruent chords to find the measure of arcs and segments	Two chords are congruent if and only if they are equidistant from the center of the circle.	13. Find the measure of $Y X$.	14. Find the measure of GF.
Determine if a chord is a diameter.	To be a diameter the chord must be a perpendicular bisector of another chord.	15. Is $\overline{Q S}$ a diameter? Why or why not?	16. Is $\overline{Q S}$ a diameter? Why or why not?

Use the properties of diameters and perpendicular chords to find the radius of a circle.	Set up the problem so that you can use Pythagorean theorem.	17. A chord in a circle is 18 cm long and is 5 cm from the center of the circle. How long is the radius of the circle?	18. The radius of a circle is 15 inches. A chord is drawn 4 inches from the center of the circle. How long is the chord?
Use properties of tangents to determine if the line is a tangent	You must satisfy the Pythagorean Theorem.		

Find the volume
of spheres.
Find the volume
of pyramids and
cones.
of prisms
cylinders.

