The cone shown has a base with a radius of AB. The length of AB=6 cm and the length of BC =10 cm. What is the volume of the cone?

A.  $288 \pi \ cm^3$ 

B.  $360 \, \pi \, cm^3$ 

C.  $\frac{640}{3} \pi cm^3$ 

D.  $96\pi \ cm^3$ 





### A Circle and Line May:

Never Intersect

no solution

⋆ 1 Point of Intersection

1 solution tangent

\* 2 Points of Intersection



2 mondarions

### Solve by Graphing

- Graph the circle and the line.
- Tell the point(s) of intersection as an ordered pair.



□ Not as exact as algebraically.





$$x^{2} + y^{2} = 9$$

$$x + y = 3$$











# Solve by Algebraically

- □ Solve the linear for one of the Va(iabbs. Xays)
  □ Substitute the linear into the
- Substitute the linear into the circle audion
- □ Solve for the <u>variable</u>
- Substitute your solution back into the to find the other variable.

## 3. Solve Algebraically



## 4. Solve Algebraically



# 5. Solve Algebraically



Geometry 5 - Coordinate Geometry Notes Name: \_ Date: Intersections of Circles & Lines - Practice 3 Possibilities for Intersection of a Circle and a Line 0 points of intersection 1 point of intersection 2 points of intersection (one real solution) (no real solution) (2 real solutions) Solve Systems Graphically:  $1.x^2 + y^2 = 9$ y + 2 = 0Point(s) of intersection: Point(s) of intersection: 3.  $x^2 + y^2 = 16$  $4. \ x^2 + y^2 = 9$ 2y = x + 8x - y = 4Point(s) of intersection: Point(s) of intersection: W Sulution

**CCGPS** Geometry

Unit 9 - Modeling Geometry

9.2 - Notes

### **Solve Algebraically:**

- 1. Solve the linear equation for a variable.
- 2. Then, substitute the linear equation into the equation representing the circle.
- 3. Solve for a variable by using one of the methods for solving a quadratic equation.
- 4. Substitute the value(s) back into the linear equation to get the 2<sup>nd</sup> variable.

Geometry in Coordinate Plane

Name

2) 3x - 5y = 20 (-5, 8)

### Lines and Circles Recap

Date Period

Write the equation of a line parallel to the given line through the given point.

1) 
$$x+y=-2$$
 (-2,5)  
 $y=-x-2$   $xy$   $y=-x+b$   
 $y=-x+b$   
 $y=-1$   
 $y=-1$   
 $y=-1$ 

Write the equation of a line perpendicular to the given line through the given point.

3) 
$$8y = 40 - 2x$$
 (3, 7)

 $y = -\frac{1}{4} \times +5$ 
 $y = 4(3) + b$ 
 $y = 4(3) + b$ 

Identify the center and radius of each. Then sketch the graph.

5) 
$$(x-3)^2 + (y+4)^2 = 9$$



6) 
$$(x-1)^2 + (y-4)^2 = 4$$



Use the information provided to write the equation of each circle.







- 9) Center: (11, -13)
- Radius: √26 (X -11)2+(4+13)2=26

Identify the center and radius of each.

11) 
$$x^2 + y^2 + 10x - 22y + 141 = 0$$

- 10) Center: (-4, 2)
  - Radius: 10

12)  $x^2 + y^2 - 4x - 22y + 109 = 0$ 





 $\varsigma + x - = \Lambda$  (

8)  $(x-2)^2 + (y-1)^2 = 25$  (2)  $(x-11)^2 + (y+13)^2 = 26$ 8)  $(x-3)^2 + (y-1)^2 = 25$  (2) H) Radius: 4