So far, we have answered questions about triangles that we have been told are congruent. But what if we are not told whether or not they are the same? There are a few ways that we can show that the triangles MUST be the same. These ways are called theorems or postulates. If we have enough information to show that one of the theorems or postulates is reprented, we can PROVE that two triangles are congruent.

Congruence Postulate \#1

Side Side Side (SSS): If three sides of one triangle are congruent to three sides of another triangle, the triangles are congruent.

Example 1:

a. From the diagram we see:

$$
\begin{aligned}
& \overline{A B} \cong \overline{O D} \text { and } \\
& \overline{B C} \cong \overline{D G} \text { and } \overline{C A} \cong \overline{O G}
\end{aligned}
$$

Therefore... $\triangle A B C \cong \triangle O D G$ by $S S S$

b. Let's take a look:

From the diagram, we know that $\overline{A B} \cong$ \qquad and $\overline{A C} \cong$ \qquad
But that's only 2 sides, and we need three.

What do you notice about the third side of each triangle? \qquad
Anytime we add something to a diagram, we must have a property or justification! When two triangles are sharing a side length we can use the \qquad property to show that it is congruent to itself! Therefore: \qquad
Now we can prove: $\triangle A B C \cong$ \qquad by the \qquad postulate.
c. Another property we'll see with side lengths...

Given: A is the midpoint of $\overline{D U}$, can we prove that $\triangle U G A \cong \triangle D C A$?

So... we know that: $\overline{U G} \cong$ \qquad and
$\overline{G A} \cong$ \qquad . That's only two sides, so we are

going to need another side length. The given information in the problem says that A is the midpoint of $\overline{D U}$.

Define Midpoint:

\qquad
Based on this definition, know we know \qquad \cong \qquad .

Therefore $\triangle U G A \cong \triangle D C A$ by \qquad .

Our next postulate with involve using some angles, so we need to understand some vocabulary first. When two sides of a triangle meet, they form an angle. The angle where two sides meet is called their "included" angle.

- In the diagram to the right, angle A is the included angle of sides \qquad and \qquad .

You try: Identify the included angle of the solid sides of each triangle.
2. a.

c. u

Let's Take a closer look:

- From the diagram we can see that $\overline{D E} \cong \overline{A B}$ and $\overline{D F} \cong \overline{A C}$
- We can also see that the Included angle between the sides is marked as congruent.
- Anytime you have two fixed
distances (your solid sides) bound by the same angle (the included angle) the distances it takes to connect those endpoints (E to F) or (B to C) will always be the same!
This means anytime you see two congruent sides with congruent included angles you know that the two triangles MUST be congruent.

When we prove triangles congruent this way, we are using our second postulate:

congruence Postulate \#2

Side Angle Side (SAS): It two sides and the included angle of one triangle are congruent two sides and the included angle of another triangle, the two triangles will be congruent.
3. a. From the diagram we see: $\overline{L V} \cong \overline{N C}$ and $\overline{L U} \cong \overline{N S}$ and the included angles: $\angle L \cong \angle N$

Therefore... $\Delta L V U \cong \triangle N C S$ by

b. Lets Take a Look:

From the diagram, we know that $\overline{A B} \cong$ \qquad and $\overline{B C} \cong$ \qquad
But that's only 2 sides. We either need another side for SSS or the included angle for SAS.

Remember, we MUST have a property or justification
 to add anything to our diagram.... Do you notice anything about the included angles that we know from previous lessons? \qquad

36 continued:

Any time you see \qquad you can add a
marking for them into your diagram!
Now we know that \angle \qquad $\cong \angle$ \qquad .
since these are the included angles, we can now say that $\triangle A B C \cong$ \qquad by the \qquad Postulate.

You Try: Decide which congruence postulate can be used for each pair of triangles below. If they are congruent, write a congruence statement. If neither postulate can be used, put an " X " in each blank.

$$
\triangle L M N \cong \quad \text { by_____ }
$$

6

$\triangle L M N \cong$ \qquad by \qquad
$\triangle D E F \cong$ \qquad by \qquad

Challenge Problem! Putting it all together
7. Given: B is the Midpoint of $\overline{C D}$.

From the diagram we know.... $\overline{A B} \cong$ \qquad

- What can we mark because of the midpoint?
\qquad
- We can mark \qquad \cong \qquad because they are \qquad
\qquad .

Therefore: $\triangle A B C \cong \triangle$ \qquad by \qquad

Vocabulary to help us with our next postulate:

The side length that is between two angles is called the included side. postulate \#3

Angle Side Angle (ASA) -If two angles and the included side of one triangle are congruent to two angles and the included side of another triangle, then the two triangles are congruent.

8. Example:

From the diagram we see: $\angle U \cong \angle N$ and $\angle A \cong \angle T$ and the included sides $\overline{U A} \cong \overline{N T}$ Therefore... $\triangle U G A \cong \triangle N V T$ by $A S A$

9. . Lets Take a Look:

From the diagram, we know that $\angle A B C \cong \angle \ldots$ and $\angle A D B \cong$ \qquad
But that's only two angles. We the included sides to be congruent for ASA.

Remember, we MUST have a property or justification to add anything to our diagram...Do you see anything we are allowed to mark? Since \qquad \cong \qquad by the \qquad ,
Therefore $\triangle A B D \cong \triangle$ \qquad by \qquad .
10. Another Property we might see dealing with angles:

Given: $\overline{A C}$ is an angle bisector for $\angle B C D$.
can you prove the two triangles are congruent? We know....

\qquad from the diagram, and \qquad \cong \qquad by the reflexive Property. Define Angle Bisector: \qquad
Therefore, $\angle B C A \cong \angle$ \qquad and that means that $\triangle A B C \cong \triangle$ \qquad by \qquad

Vocabulary for our next postulate:
A side length that is not directly in between to angles is called a non-included side.

Theorem \#4

Angle Angle Side (AAS): If two angles and a non-
included side of one triangle are congruent the two angles and the corresponding non-included side of another triangle, the two triangles are congruent.

Example:

11. From the diagram we see: $\angle A \cong \angle I$ and $\angle B \cong \angle H$ and the corresponding non-included sides $\overline{A C} \cong \overline{I J}$ Therefore... $\triangle A B C \cong \triangle I J H$ by $A A S$

12. Two of the examples below are examples of AAS, one is an example of ASA. Decide which

$\triangle A B C \cong$ \qquad by \qquad

$\triangle A B C \cong$ \qquad by \qquad

$\triangle U G A \cong$ \qquad by \qquad
13. Another property we may see with angles...

Given: $\overline{A C} \| \overline{D E}$, prove the two triangles congruent.
We know.... $\overline{C B} \cong \overline{D B}$ from the diagram, and
\qquad \cong \qquad because they are vertical angles. Since $\overline{A C} \| \overline{D E}$, what kind of angles are $\angle A$
 and $\angle E$? \qquad
Therefore, $\angle A \cong \angle$ \qquad and that means that $\triangle A B C \cong \triangle$ \qquad by \qquad $\angle C$ and $\angle D$ are also \qquad , so there is more than one correct way to do this one. ().

Recall: Right Triangles

In a Right triangle, the side lengths that form the right angle are called the \qquad of the triangle, and the side opposite the right angle is called the \qquad .

- Right triangles have many special properties! we have a triangle congruence theorem that works

Leg ONLY for right triangles!

- All our other postulates and theorems work for right triangles too! Right triangles just have an extra on that is special just for them.
Hypotenuse Leg(HL): If the hypotenuse and one leg in a right triangle are congruent to the hypotenuse and one leg of another right triangle, the two triangles are congruent.

Example:

14. From the diagram we see: $\angle B$ and $\angle K$ are both right angles, making these right triangles. $\overline{A B} \cong \overline{L K}$. These are the \qquad of the right triangles. $\overline{A C} \cong \overline{L K}$ These segments are the \qquad of the right

triangles. Therefore... $\triangle A B C \cong \triangle L K J$ by $H L$
15. You Try! Determine which postulate or theorem you can use to prove the triangles congruent.

d. True or False: HL is the only method to prove that two right triangles are congruent.
Side Side Side (SSS): If three
sides of one triangle are congruent to three
sides of another triangle, the triangles are
congruent.
Side Angle Side (SAS): If two
sides and the included angle of one triangle are
congruent to two sides and the included angle of
another triangle, the two triangles will be
congruent.
Angle Side Angle (ASA)-If two
angles and the included side of one triangle are
congruent to two angles and the included side of
another triangle, then the two triangles are
congruent
