Transformations Organizzer

Translation- moves every point of a figure by the same distance in a given direction. We can "slide" a point or a figure left, right, up or down.

- Right: $(x, y) \rightarrow(x+a, y)$ This will shift the point "a" units right
- Left: $(x, y)>(x-a, y)$ This will shift a point "a" units left.
- Up: $(x, y) \rightarrow(x, y+b)$ This will shift a point "b" units up
- Down: $(x, y) \rightarrow(x, y-b)$ This will shift a point "b" units down.

Reflections: A reflection "flips" a point or a figure over a given line. All the points of the image will be the same distance away from the line of reflection as the pre-image, just on the opposite side of the line.

- Reflect over x-axis: Change the sign of $y .(x, y) \rightarrow(x,-y)$
- Reflect over y-axis: change the sign of $x .(x, y) \rightarrow(-x, y)$
- Reflect over the line $y=x$: Change the order. $(x, y) \rightarrow(y, x)$
- Reflect over the line $y=-x$: change the order and the signs. $(x, y) \rightarrow(-y,-x)$

Rotations: When we rotate a point or figure, we are "turning" it about a fixed point called the center of rotation. We will assume that the center of rotation is the origin unless otherwise specified. Direction is assumed to be CCW unless otherwise specified.

- 90 Degrees CCW is the same as 270 CW

$$
(x, y) \rightarrow(-y, x)
$$

- 270 Degrees CCW is the same as 90 CW

$$
(x, y) \rightarrow(y,-x)
$$

- 180 Degrees is the same in both directions

$$
(x, y) \rightarrow(-x,-y)
$$

These three transformations are called "isometries" which means the pre-image and image are always congruent.

