Transformation Rules

<u>Translation</u>- moves every point of a figure by the same distance in a given direction. We can "slide" a point or a figure left, right, up or down.

- Right: $(x,y) \rightarrow (x+a, y)$ This will shift the point "a" units **right**
- Left: $(x,y) \rightarrow (x-a, y)$ This will shift a point "a" units left.
- Up: $(x,y) \rightarrow (x, y+b)$ This will shift a point "b" units **up**
- Down: $(x,y) \rightarrow (x, y-b)$ This will shift a point "b" units **down**.

Define:

Pre-Image-

Image-_

Examples:

3. <u>Working Backwards</u>: The coordinates shown were translated by the rule $(x,y) \rightarrow (x+5, y-2)$. What were the coordinates of the pre-image?

A(,) → A'(2,5) B(,)→B'(4,7)C(,)→C'(5,-1)

4. Writing a rule: Write a rule that would produce the translation shown below.

a. A $(3,7) \rightarrow A'(-5,4)$ Rule: $(x,y) \rightarrow$ _____

b. B (4, 5) \rightarrow B' (9, -2) Rule: (x,y) \rightarrow _____

c. Using the figure, determine the rule for the translation that has occurred.

Rule: (x, y) → _____

<u>Reflections</u>: A reflection "flips" a point or a figure over a given line. All the points of the image will be the same distance away from the line of reflection as the preimage, just on the opposite side of the line.

- Reflect over x-axis: Change the sign of y. $(x,y) \rightarrow (x,-y)$
- Reflect over y-axis: Change the sign of x. $(x,y) \rightarrow (-x, y)$
- Reflect over the line y = x: Change the order. $(x,y) \rightarrow (y,x)$
- Reflect over the line y = -x: Change the order and the signs. $(x,y) \rightarrow (-y,-x)$

<u>You Try!</u>

3. Apply the given reflection to the coordinates below.

a. Reflect over y = x	b. Reflect over $y = -x$	c. Reflect over x-axis
A(1,2) → A'	B(3,-4) → B'	C(-3,-2)→ C′

4. Determine the line of reflection:a. Given the coordinate:b. Given the coord

A(1,2)→A'(-2,-1)

inate:	b. Given the coordinate:	c. Given the coordinate:
	B(3,-4) → B′(-3,-4)	C(-3,-2)→ C'(-2,-3)

5. Determine the line of reflection from the figures:

Reflecting over a given line: Mirror the points the same distance away on the other side

X = # is always a vertical line!

Y = # is always a horizonal line!

Examples:

a. Reflect the point A over the line x = -1. "A" is two units away from the line x = -1, so we place
A' two units away from x = -1, on the opposite side of the line.

b. Reflect the point A over the line y = -2. The point A is six units from the line y = -2, so we place A' six units away from y = -2 on the opposite side.

You Try! A. Reflect $\triangle ABC$ over the line y = 1.

B. Reflect $\triangle ABC$ over the line x = 1.

-8**- O** A' -9 (1,-8)

-5 -6 (1,4)

<u>Rotations</u>: When we rotate a point or figure, we are turning it about a fixed point called the center of rotation. We will assume that the center of rotation is the origin unless otherwise specified.

- When the center of rotation is the origin, we have a set of rules we can apply to our coordinate.
- The direction of rotation is understood to be **counter-clockwise** unless otherwise • specified.

90 Degrees CCW is the same as 270 CW

• Use the rule $(x,y) \rightarrow (-y,x)$

270 Degrees CCW is the same as 90 CW

• Use the rule $(x,y) \rightarrow (y,-x)$

180 Degrees is the same in both directions

Use the rule $(x,y) \rightarrow (-x,-y)$

Why Counter Clockwise??	
	ants of the coordinate plane red in a <u>counter clockwise</u> II I I II I I III I IV

0 (3,7)

Examples with one point: A is the point (3,7). Let's look at what happens to it as we rotate.

Look in Depth: What's really happening as we rotate?

- We are dragging our point along an imaginary circle! Each time we preform a rotation, the point will be the same distance away from the center of rotation, just a different spot!
- If we want to rotate about a point that is not the origin, the process is a little bit different....

When the center of rotation is NOT the origin, here's what we can do:

- 1. Subtract the center of rotation from your coordinate. This shifts the center of rotation back to the origin, allowing us to use our rules.
- 2. Apply the rule.
- 3. Add the center of rotation back to your coordinate. This shifts the center of rotation back to the right spot.

Take a Look: Rotate ABC 180° about the point (-4,1)

1. Subtract the center of rotation from each coordinate:

<u>You Try!</u>

5. Determine the transformation that has occurred from the coordinates:

a. $A(1,7) \rightarrow A'(-7,1)$ b. $B'(-2,5) \rightarrow (5,2)$

c. *C* (-2,-3) → *C*′(2,3)

6. Determine the transformation that has occurred from the figures:

