## Composition of Transformations

All the transformations we have done so far can be called isometries or rigid motions.

a. An **isometry** is a \_\_\_\_\_\_ where the pre-image and the \_\_\_\_\_\_ are **congruent**. When we perform the transformation, all the side lengths and angles stay the same length and measure. Its just the location and orientation of the figure that has changed. **<u>Rigid Motion</u>** is a \_\_\_\_\_\_ for isometry.

Our three isometries are \_\_\_\_\_, \_\_\_\_, and \_\_\_\_\_.

<u>Compositions of Transformations</u>: a combination of transformations that happens when we apply multiple transformations to the same figure.

## Example 1:

Recall, what's the rule for reflect over xaxis?

Recall? What's the rule for rotating 90 degrees?

| А( | , | ) → A' | → A‴         |  |
|----|---|--------|--------------|--|
| Β( | , | ) → B' | <b>→</b> B‴  |  |
| С( | , | ) → C′ | <b>→</b> C'' |  |



Identify the single reflection that could have produced this combination in one step.



Another notation: For Compositions, there is a special type of notation that tells us how to work a problem.

Example 3:

a.  $T_{x,y}$  denotes a \_\_\_\_\_. The \_\_\_\_ value tells you to go right when it's \_\_\_\_\_ and left when it's \_\_\_\_\_. The \_\_\_\_\_ value tells you to go \_\_\_\_ when it's positive, and \_\_\_\_\_ when it's negative.

b.  $\mathcal{R}_{\theta}$  denotes a \_\_\_\_\_. There will be a 90, 270, or 180 instead of the  $\theta$ . The default direction for a rotation is always \_\_\_\_\_.

c.  $V_{line}$  denotes a \_\_\_\_\_. The line of reflection will be give where you see the word "line". We often reflect over the following lines: \_\_\_\_\_, \_\_\_\_,

d. When working in composition notation we have to work from \_\_\_\_\_\_to \_\_\_\_\_to \_\_\_\_\_\_, which is the opposite of what we are used to!

## Example 4:

What is the image of the point A(3, -2) under the transformation  $\mathcal{R}_{q0^{\circ}} \circ \mathcal{T}_{-4,3?}$ 

• Step 1: Work from Right to left! So first we will \_\_\_\_\_\_ the point, and then we will \_\_\_\_\_\_ it.

A (3,-2) will be moved \_\_\_\_\_ to the left, and \_\_\_\_\_ up. To become A' \_\_\_\_\_.

• Step 2: Now we will \_\_\_\_\_ the point \_\_\_\_\_ degrees counterclockwise, using the rule  $(x,y) \rightarrow$ \_\_\_\_\_

A' \_\_\_\_\_\_ becomes A'' \_\_\_\_\_\_.

Remember we work **right to left** in this notation only!

