Composition of Transformations

All the transformations we have done so far can be called isometries or rigid motions.
a. An isometry is a \qquad where the pre-image and the \qquad are congruent. When we perform the transformation, all the side lengths and angles stay the same length and measure. Its just the location and orientation of the figure that has changed. Rigid Motion is a \qquad for isometry.

Our three isometries are \qquad , \qquad , and \qquad .

Compositions of Transformations: a combination of transformations that happens when we apply multiple transformations to the same figure.

Example 1:

Recall, what's the rule for reflect over xaxis?

Recall? What's the rule for rotating 90 degrees?

$$
\begin{array}{ll}
A(,) \rightarrow A^{\prime}-\rightarrow A^{\prime \prime} \\
B(,) \rightarrow B^{\prime}- & \rightarrow B^{\prime \prime} \\
C(,) \rightarrow C^{\prime}
\end{array}
$$

Identify the single reflection that could have produced this combination in one step.
Reflection over \qquad .

Example 2:

$A(,) \rightarrow A^{\prime} \longrightarrow A^{\prime \prime}$
$B(,) \rightarrow B^{\prime}$ \qquad $\rightarrow B^{\prime \prime}$ \qquad
$C(,) \rightarrow C^{\prime} \rightarrow C^{\prime \prime}$ \qquad

- What one transformation could have produced this combination in one step?

Rotate 180 degrees, then reflect over the y-axis

Another notation: For compositions, there is a special type of notation that tells us how to work a problem.

Example 3:

a. $T_{x, y}$ denotes a \qquad . The \qquad value tells you to go right when it's
\qquad and left when it's \qquad . The \qquad value tells you to go \qquad when it's positive, and \qquad when it's negative.
b. $R_{\theta \text { denotes a }}$ \qquad . There will be a 90, 270, or 180 instead of the θ.
The default direction for a rotation is always \qquad .
c. Cline denotes a \qquad . The line of reflection will be give where you see the word "line". We often reflect over the following lines: \qquad , \qquad ,
\qquad , \qquad , \qquad —.
d. When working in composition notation we have to work from \qquad to
\qquad , which is the opposite of what we are used to!

Example 4:

What is the image of the point $A(3,-2)$ under the transformation $R_{90^{\circ}} 0 T_{-4,3 \text { ? }}$

- Step 1: Work from Right to left! So first we will \qquad the point, and then we will \qquad it.
$A(3,-2)$ will be moved \qquad to the left, and
\qquad up. To become A^{\prime} \qquad -.
- Step 2: Now we will \qquad the point
\qquad degrees counterclockwise, using the rule $(x, y) \rightarrow$ \qquad

A^{\prime} \qquad becomes $A^{\prime \prime}$ \qquad .

Remember we work right to left in this notation only!

