Warm up

Midpoint

Given 2 ordered pairs, it's the
AVG of the x 's and AVG of the y 's.

Midpoint Formula

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

Find the midpoint.

1. $(3,7)$ and $(-2,4)$
2. $(5,-2)$ and $(6,14)$

Find the midpoint.
3. $(3,-9)$ and $(14,16)$
4. $(12,17)$ and $(-7,9)$

Find the midpoint.

6

7

Given the midpt and one endpt, find the other endpt.
8.

Midpt (-1, 2)
Endpt $(3,0)$

9

Partition Line Segments (1 Dimension)

$$
\left(x_{2}-x_{1}\right)\left(\frac{a}{a+b}\right)+x_{1}
$$

Given the midpt and one endpt, find the other endpt.
7.

Midpt $(3,-6)$
Endpt (7, -3)

8

Partition-1 Dimension

$\left(x_{2}-x_{1}\right)\left(\frac{a}{a+b}\right)+x^{x}$
A is at 1 , and B is at 7 .
Find the point, T, so that T partitions A to B in a $2: 1$ ratio.

Partition-1 Dimension

$\left(x_{2}-x_{1}\right)\left(\frac{a}{a+b}\right)+x_{1}$
A is at -6 and B is at 4 .
Find the point, T, so that T is A to B in a 2:3 ratio.

Given the points $A(-2,4)$ and $B(7,-2)$, find the coordinates of the point P on the directed line segment $A B$ that partitions $A B$ in the ratio 1:2.

