Mutually Exclusive vs. Overlapping

- If two or more events cannot occur at the same time they are termed <u>mutually exclusive</u>.
 - *They have **no** common outcomes.
- Overlapping events have at least one common outcome.

Mutually Exclusive Formula

$$P(A \text{ or } B) = P(A) + P(B)$$

2

OR Means you ADD

3

1

Example 2:

₩When rolling two dice find

P(sum 4 or sum 5)

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

Example 1:

- Find the probability that a girl's favorite department store is Macy's or Nordstrom.
- Find the probability that a girl's favorite store is **not** JC Penny's.

Macy's	0.25
Saks	0.20
Nordstrom	0.20
JC Penny's	0.10
Bloomingdale's	0.25

Sum of Rolling 2 Dice

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

4

Example 3:

*In a deck of cards, find
P(Queen or Ace)

8

Overlapping Events Formula

$$P(A \text{ or } B) = P(A) + P(B) - P(A \cap B)$$

9

Example 5:

- ***** Find the P(A \cup B)
- * A = band members
- ₭ B = club members
- ★ A = 195 students
- ₭ B= 565 club members
- 35 students do both band and a club.
- ∗ 1200 total students at the High School

Example 4:

★A = drink coffee

∗B = drink soda

10

Example 6:

In a deck of cards find
P(King or Club)

Example 7:

*Find the P(picking a **female** or a person from **Florida**).

	Female	Male
FL	8	4
AL	6	3
GA	7	3

13

Example 9: Complementary Events

Find $P(\overline{AUB}) =$

- ★ A = band members
- B = club members
- ▲ A = 195 students
- B= 565 club members
- 35 students do both band and a club.
- 1200 total students at the High School

Example 8:

* When rolling 2 dice, find P(an even sum or a number greater than 10).

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

14

Example 10: Complementary Events

A = plays volleyball (26 students) B = plays softball (37 Students) There are 454 total

athletes

What is the probability that someone does **not** play volleyball?

$$P(\overline{A}) =$$

16