Mutually Exclusive vs. Overlapping

* If two or more events cannot occur at the same time they are termed mutually exclusive.
*They have no common outcomes.
* Overlapping events have at least one common outcome.

1

OR

Means you ADD

3

Example 2:

*When rolling two dice find

P(sum 4 or sum 5)

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	6
$\mathbf{1}$	2	3	4	5	6	7
$\mathbf{2}$	3	4	5	6	7	8
$\mathbf{3}$	4	5	6	7	8	9
$\mathbf{4}$	5	6	7	8	9	10
$\mathbf{5}$	6	7	8	9	10	11
6	7	8	9	10	11	12

Mutually Exclusive Formula

$$
P(A \text { or } B)=P(A)+P(B)
$$

2

Sum of Rolling 2 Dice

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	4	$\mathbf{5}$	$\mathbf{6}$
$\mathbf{1}$	2	3	4	5	6	7
$\mathbf{2}$	3	4	5	6	7	8
$\mathbf{3}$	4	5	6	7	8	9
$\mathbf{4}$	5	6	7	8	9	10
$\mathbf{5}$	6	7	8	9	10	11
6	7	8	9	10	11	12

4

Example 1:

* Find the probability that a girl's favorite department store is Macy's or Nordstrom.
* Find the probability that a girl's favorite store is not JC Penny's.

Macy's	0.25
Saks	0.20
Nordstrom	0.20
JC Penny's	0.10
Bloomingdale's	0.25

Deck of Cards

7 Overlapping Events Formula
$P(A$ or $B)=P(A)+P(B)-P(A \cap B)$

9

Example 5:

* Find the $P(A \cup B)$
* $A=$ band members
* $B=$ club members
* $\mathrm{A}=195$ students
* $\mathrm{B}=565$ club members
* 35 students do both band and a club.
* 1200 total students at the High School

Example 3:

*in a deck of cards, find P(Queen or Ace)

8

Example 4:

*Find the probability that a person will drink both.

* $\mathrm{A}=$ drink coffee * $\mathrm{B}=$ drink soda

Survey of Office Workers

10

Example 6:

* In a deck of cards find P(King or Club)

Example 7:

* Find the P(picking a female or a person from Florida).

	Female	Male
FL	8	4
AL	6	3
GA	7	3

13

Example 9: Complementary Events

Find $P(\overline{A U B})=$

* $\mathrm{A}=$ band members
* $B=$ club members
* $A=195$ students
* $\mathrm{B}=565$ club members
* 35 students do both band and a club.
* 1200 total students at the High School

Example 8:

* When rolling 2 dice, find P (an even sum or a number greater than 10).

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	4	5	6
$\mathbf{1}$	2	3	4	5	6	7
$\mathbf{2}$	3	4	5	6	7	8
$\mathbf{3}$	4	5	6	7	8	9
$\mathbf{4}$	5	6	7	8	9	10
$\mathbf{5}$	6	7	8	9	10	11
6	7	8	9	10	11	12

14

Example 10: Complementary Events

A = plays volleyball
(26 students)
B = plays softball (37
Students)
There are 454 total
athletes
What is the probability
that someone does
not play volleyball?

16

