Name: ____ _____Date: ______ ## Unit 1 Test Review ## Missing Angles: Solve for x. 1. 2 3. 4. 5. $\angle 1$ and $\angle 2$ are complementary. Solve for x and the measure of both angles. $$\angle 1 = 12x + 4$$ $$\angle 2 = 9x + 2$$ 6. The measure of one angle is 38 less than the measure of its supplement. Find the measure of each angle. 7. One of two supplementary angles is 123° less than twice its supplement. Find the measure of both angles. ## Parallel Lines: Name the angles listed and the special property of each pair. 8. ∠1 and ∠5_____ 9. ∠4 and ∠6 _____ 10. ∠2 and ∠8_____ 11. ∠4 and ∠5_____ 12. Given m \mid \mid n and m \angle 8, find the measures of all the numbered angles in the figure. Solve for x. 13. 14. **Congruent Triangles:** Determine whether each pair of triangles is congruent (SSS, SAS, ASA, AAS, or HL). If not, write not congruent. 15. 16. 17. 18. 19. 20. \triangle ABC \cong \triangle DEF. What is congruent to \angle EDF? 21. Complete the following proof: | proof, | | | | |--|----|--------|---| | Statement | | Reason | | | 1. ∠ <i>I</i> ≅ ∠ <i>K</i> | 1. | | _ | | 2 . ∠ <i>IHJ</i> ≅ ∠ <i>KJH</i> | 2. | | _ | | 3. | 3. | | _ | | 4. Δ <i>HJK</i> ≅ Δ <i>JHI</i> | 4. | | _ | __Date: Name the transformation that maps: ΔABC→ΔCDE 2. ∆ABC→∆DEF 3. ∆PMR→∆PMQ 4. In the diagram, $\ell \parallel m$ and \triangle ABC is reflected first in line ℓ and then in line m. This set of reflections is equivalent to doing what kind of singular transformation? Describe any rotations (of 180° or less) that will map each figure onto itself. 8. Draw the image of each figure, using the given transformation. - 9. Translation $(x, y) \rightarrow (x 8, y 3)$ - 10. Reflection across the x-axis. 11. Reflection across the line x = -2 12. Reflection across the y-axis. 13. Rotation **180°** about the origin 15. Translation $(x, y) \rightarrow (x + 9, y - 8)$ Rotation 180° about the origin. 14. Rotation 90° clockwise about the origin. 16. **Rotation 90° CCW** about the origin Reflection about the line **y = x.**