Good morning!

- 1. "Here"
- 2. Begin Part 3 or Unit 1
- 3. Notes on Solving Systems of Equations by Graphing
- 4. Upload Practice (p. 5-10) to CTLS

Algebra 1

Unit 1 - Part 3

Linear Functions

Monday	Tuesday	Wednesday	Thursday	Friday
Jan. 25 th	Jan. 26 th	Jan. 27 th	Jan. 28 th	Jan. 29 th
			Unit 1 Part 2 Quiz	Solving Systems by Graphing
Feb. 1st	Feb. 2 nd	Feb. 3 rd	Feb. 4 th	Feb. 5 th
Solving Systems by Substitution	Solving Systems by Elimination Quiz	Quiz due at midnight	Systems of Equations Word Problems	Graphing Systems of Inequalities
Feb. 8th	Feb. 9th	Feb. 10 th	Feb. 11th	Feb. 12th
Graphing Systems of Inequalities	Review Test	Test due at midnight	Factoring by GCF	Factoring

Introduction to Systems of Equations

A system of linear equations consists of 2 or more linear equations that

Variables use the same

solution _ to a system of equations is the intersection or POIN+

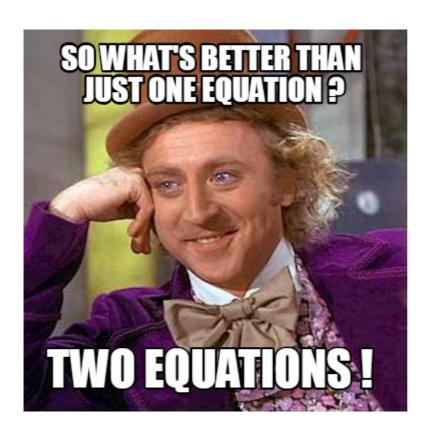
that make ALL of the equations true.

Remember, a point is represented by an ordered pair (#.#).

Determine if the given ordered pair is a solution to the system of equations.

1)
$$3x + 7y = 12$$
 Point: $(-3,3)$
 $7x - y = -4$ Not a solution.
 $3(-3) + 7(3) = 12$
 $-9 + 21$
 $12 = 12$
 $7(-3) - (3) = -4$
 $-21 - 3$
 $-24 = -4$

Point: $(2,3)$
 $2x - 7 = -y$ Point: $(2,3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$
 $2(2) - 7 = -(3)$


When you are solving for a system of equations, you can have 3 different types of solutions:

One Solution

No Solution

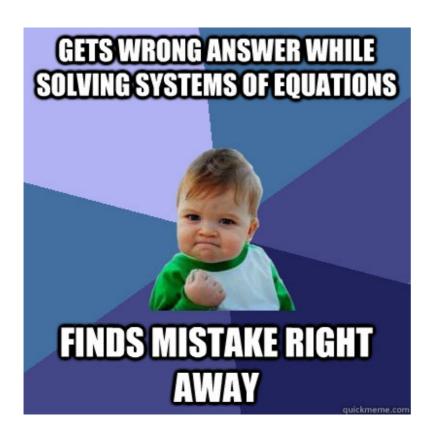
Infinitely Many Solutions

One Solution	Independent System	Intersecting
No Solution	Inconsistent System	Parallel 77
Infinitely Many Solutions	Dependent System	Same Line Collinear

Solving Systems of Equations by Graphing Steps: Graph the first equation. Graph the second equation on the coordinate plane. 3) Determine whether the lines intersect, are parallel, or are the same line. 4) Identify the solution to the system and check it. Examples 2x - 2y = -89=1×+4 y = -2x + 1 $6 : -\frac{2}{1} \times 1$ 2x + 2y = 43) x + y = -22x - 3y = -9

$$2x - 2y = -8$$

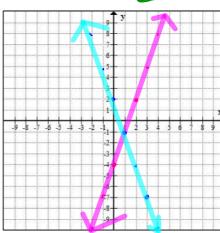
$$2x + 2y = 4$$


$$2(-1) - 2(3) = -8$$

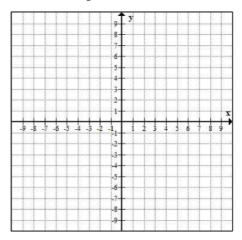
$$-2 - 6 = -8$$

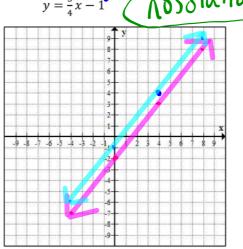
$$-8 = -8$$

$$-2 + 6 = 4$$


$$4 = 4$$

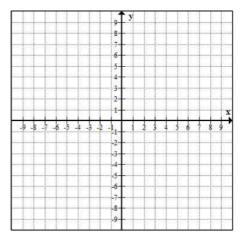
Graphing Systems of Equations Practice

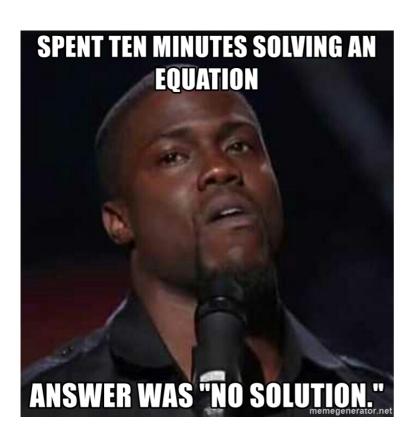

 $1) \qquad y = 3x - 4$ y = -3x + 2

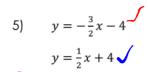


2)
$$y = \frac{4}{3}x + 3$$

$$y = -\frac{2}{3}x - 3$$

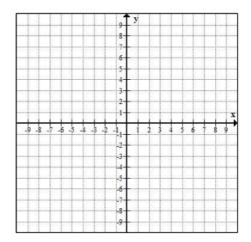


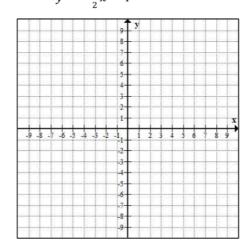





4)
$$y = \frac{1}{3}x + 2$$

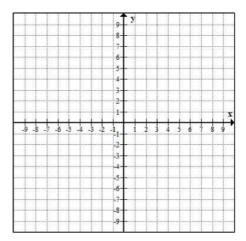
$$y = -x - 2$$

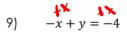


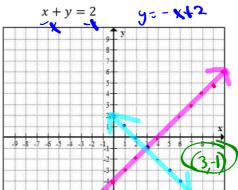


6)
$$y = 4x - 1$$

$$y = -x + 4$$



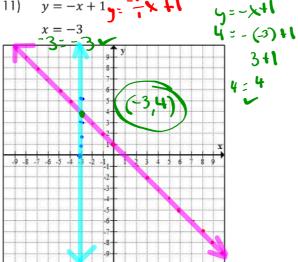

7)
$$y = \frac{3}{4}x + 1$$
$$y = -\frac{1}{2}x - 4$$

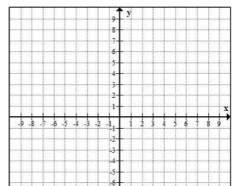


8)
$$2y + 3x = -6$$

$$2x + y = 2$$

y - 3x = 410)

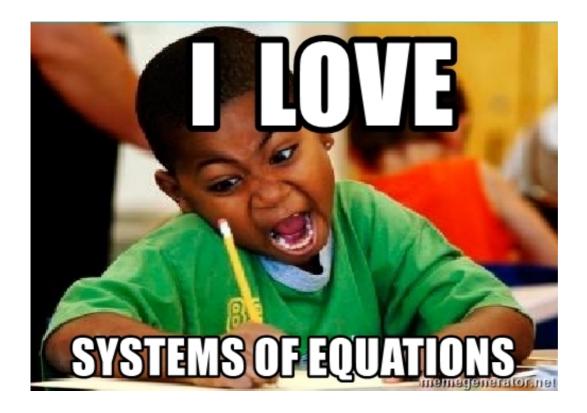

$$x + y = 4$$



11)

12) y = -4

$$x = 2$$


What do you notice?

- If two lines have the SAME SLOPE (m), and the SAME Y-INTERCEPT (b), then the system has INTINITELY MANY SOLUTIONS
- ► If two lines have the SAME SLOPE (m), but DIFFERENT Y-INTERCEPTS (b), then the system has NO SOLUTION

One ▶ If the lines have DIFFERENT SLOPES (m), then the system has _

Solution __ regardless of if the y-intercepts are the same or different

What were the headlines after a mad scientist trained two eggs to attack a candy store with sharp sticks?

Directions: Solve each of the equations below by graphing. Cross out the box containing your answer. When you finish, print the remaining boxes in the spaces at the bottom of the page.

$$1) \qquad y = \frac{2}{3}x - 1$$

2)
$$y = -2x + 1$$

3)
$$y = \frac{1}{2}x - 3$$

$$y = -x + 4$$

$$y = x - 5$$

3x + y = -4

2x - 5y = 20

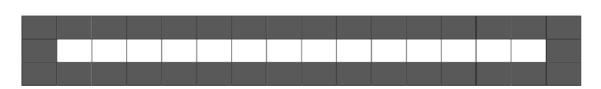
$$y = \frac{3}{2}x - 1$$

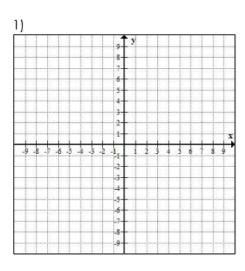
$$4) \qquad y = 2x$$
$$x + y = 3$$

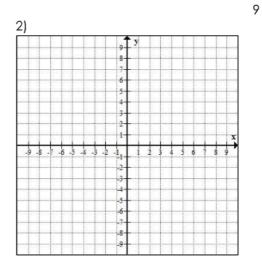
$$5) \qquad x + y = 0$$

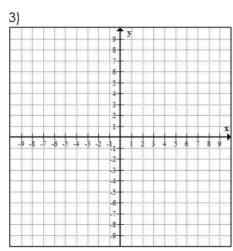
6)
$$x = 3 - 3y$$

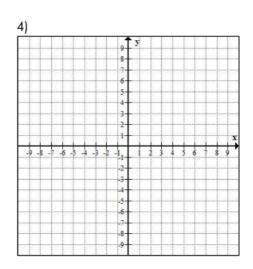
$$x + 3y = -6$$


$$7) \qquad x + 2y = -4$$
$$4y = 3x + 12$$


8)
$$y = -2$$


9)
$$4x + 3y = -15$$


$$y = x + 2$$


T W	E G	0 \$	G S	W E	ΕT	S P	TR
(-4,0)	(-4, -5)	no solution	(4,1)	(3,1)	(-2,-4)	(-1,6)	(-3, -1)
ΕA	T S	RA	ΤI	МΙ	S S	NT	U P
(-3,5)	(1,2)	(0,3)	(2,-3)	(4, -3)	(5, -2)	(-1,0)	(-2,2)

