Functions and Relations Notes

Terms to Know									
♦ Relation: a set of	that has an								
♦ Function: a	such that every single	has exactly							
output.									
The notation of a function is important in higher mathematics such as calculus and in areas which use mathematics such as physics.									
Domain:									
◇ Range:									
How do I determine if a rel	ation is function?								
♦ Each input must have output.									
♦ When given a graph – the vertical line test: NO vertical line can pass through									
	points on the graph.								
Here are 2 examples of fun	ctions and the third is NOT a function.								

1) Input the number of seconds after the starting gun in a race to get an output of the number of meters the runner has covered.

Race Chart								
number of seconds (input) 1 4 7 8								
meters covered (output)	5	20	35	40				

2) y = x - 6, where x is the place holder (also called a _____) for the input and y is the place holder for the output.

function $y = -x - 6$									
x (input)	-3	0	7	8					
y (output)	-9	-6	1	2					

3) The rule about only one output each time is crucial and must not be violated.

not a function								
input 3 2 0 3								
output	4	-1	2	-3				

wny is this not a function? _	
•	

You Try: Determine whether each of the following is a function.

1) {(3,2), (4,3), (5,4), (6,5)}

2)

3)

4)

Function Notation

♦ Function notation is _______. It is pronounced _______.

 $\Diamond f(x)$ is a fancy way of writing _____ in an _____.

Example: f(x) = 2x + 4 is the same as y = 2x + 4

Function Notation	x – y Notation
f(x) = 5x + 2	
	y = -3x - 7

Evaluating Functions

1) Given
$$f(x) = 2x + 3$$
, find $f(-2)$.

2) Given
$$f(x) = 32(2)^x$$
, find $f(3)$.

3) Given
$$f(x) = x^2 - 2x + 3$$
, find $f(-3)$.

4) Given
$$f(x) = 3^x + 1$$
, find $f(3)$.

Function Notation - Continued

When a function can be written as an equation, the symbol f(x) replaces y and is read as "the value of function f at x" or simply "f of x".

This does NOT mean f times x.

Replacing y with f(x) is called writing a function in function notation.

- \star REMEMBER \star f(-3) means -3 if your input and you plug it in for x
 - $\star f(x) = -3$ means -3 is your output and your whole function is equal to -3 and you plug -3 into the y

Examples:

- 1) If f(x) = 2x 3, find the following.
 - a) f(-2)

b) f(7)

c) f(-4)

- 2) If k(x) = -7x + 1, find the following.
 - a) k(0)

b) k(-1)

c) k(5)

Sometimes, there will be multiple x's in an equation. When this occurs, simply replace all of values of x.

- 3) If $h(x) = x^2 3x + 5$, find the following.
 - a) h(-3)

b) h(5)

- 4) If $p(x) = x^2 + 5x 3$, find the following.
 - a) p(-2)

- b) p(1)
- 5) If f(x) = 5x 3, complete the following table of values. Then determine what type of function it is.

x	-2	-1	0	1	2	3
f(x)						

Function Notation Worksheet

1) Evaluate the following expressions given the functions below.

$$g(x) = -3x + 1$$

$$f(x) = x^2 + 7$$

$$h(x) = \frac{12}{x}$$

$$h(x) = \frac{12}{x} \qquad \qquad j(x) = 2x + 9$$

a)
$$g(10) =$$

b)
$$f(3) =$$

c)
$$h(-2) =$$

d)
$$j(7) =$$

e)
$$h(a) =$$

f) Find x if
$$g(x) = 16$$

g) Find x if
$$h(x) = -2$$

h) Find x if
$$f(x) = 23$$

2) Translate the following statements into coordinate points.

a)
$$f(-1) = 1$$

b)
$$h(2) = 7$$

c)
$$g(1) = -1$$

d)
$$k(3) = 9$$

3) Given this graph of function f(x), find the following.

- a) f(-4) =
- b) f(0) =

c) f(3) =

- d) f(-5) =
- e) x such that f(x) = 2
- f) x such that f(x) = 0
- 4) Evaluate the function using the following graph.

- a) f(-1) =
- b) f(3) =

- 5) Look at the graph below. Find the following values of the function.

a) f(6) =

b) f(2) =

c) f(0) =

- d) f(5) =
- e) For which value(s) of x is the following statement true? f(x) = 1

Function Notation – Quotable Puzzle

Directions: Solve the following problems. Match that answer to the correct letter of the alphabet. Enter that letter of the alphabet on the blank corresponding to the problem number. #15 is completed for you.

<u>F</u> 15	12 4	2	9 8	14	4	10	3	1	10 10		9 1	1 1 7
<u>_V_</u>	7 6	9	8 2	1	13	13	8	4	7	9	7 1	10 9
A 9	В О	C -1	D -16	E 18	F 16	G -2	H -4	1 3	J 2	K -9	L 1	M -3
N -7			Q 7			T -5			W -23			

Simplify.

1)
$$f(x) = 2x - 1$$
. Find $f(5)$.

9)
$$f(x) = x^3 - 2x - 1$$
. Find $f(-2)$.

2)
$$f(x) = x^2 - 3x - 1$$
. Find $f(3)$.

10)
$$f(x) = x^4 + 2x^2 - 1$$
. Find $f(2)$.

3)
$$f(x) = 2x + 5$$
. Find $f(0)$.

11)
$$f(x) = -4x - 8$$
. Find $f(-1)$.

4)
$$f(x) = -2x^2 - 5$$
. Find $f(-1)$.

12)
$$f(x) = 2x - 10$$
. Find $f(1)$.

5)
$$f(x) = x + 5$$
. Find $f(-7)$.

13)
$$f(x) = x^3 - 2x^2 + x + 5$$
. Find $f(-1)$.

6)
$$f(x) = 6x^2 + 2x$$
. Find $f(1)$.

14)
$$f(x) = x^2 - 21$$
. Find $f(5)$.

7)
$$f(x) = \frac{1}{4}x + 2x$$
. Find $f(8)$.

15)
$$f(x) = (x-2)^2$$
. Find $f(-2)$.
 $f(-2) = ((-2) - 2)^2$
 $f(-2) = (-2 - 2)^2$

8)
$$f(x) = 4x - 5$$
. Find $f(2)$.

$$f(-2) = (-4)^2$$

$$f(-2) = 16$$