Similarity and Dilations

In the diagram, $\Delta CAT \sim \Delta DOG$. Use the diagram to find each of the following.

1. Scale factor of ΔCAT to ΔDOG (Simplify.)

Scale Factor =

2. Find x and y (Show Work!)

- 3. Find $m\angle D =$
- 4. Find $m\angle 0 =$
- 5. Find $m\angle A =$

- 6. What is the ratio of the perimeter of ΔCAT to the perimeter of ΔDOG ?
- 7. A boy who is 6 ft. tall cast a shadow that is 15 ft long. At the same time, a building nearby cast a shadow that is 186 ft long. How tall is the building? $\underline{Draw\ a\ picture!}$

x 6 15

Determine why the triangles are similar (postulate or theorem), and write a similarity statement.

8. ∆BAC~

9. ∆TRS~

Determine which of the triangles (ΔDEF or ΔGHJ) is similar to ΔABC :

10. Complete the Similarity Statement to Δ CBA $\sim \Delta$

11. Find the Scale Factor =

Determine whether the dilation from Figure ABC to Figure A'B'C' is a reduction or an enlargement. Then find its scale factor and simplify if possible.

Reduction or enlargement?

Reduction or enlargement?

scale factor =

scale factor =

Graph the image of the figure using the transformation given.

14) dilation of 4 about the origin

15) dilation of $\frac{1}{2}$ about the origin

Find the coordinates of the Vertices of each figure after the given transformation. Identify if it is an enlargement or reduction.

16) dilation of
$$\frac{1}{2}$$
 about the origin $\mathbb{R}(-1, -1)$, $\mathbb{S}(0, 2)$, $\mathbb{T}(1, 2)$, $\mathbb{U}(2, -2)$

17) dilation of 2 about the origin $\Xi(-1, -1)$, Y(-1, 2), X(1, 1)