Unit 3B: Segments in Circles

If two chords are congruent, then their corresponding arcs are congruent.

Solve for x. $8x - 7 \left(\begin{array}{c} \\ \\ \end{array} \right) 3x + 3$

Find WX.

Example Find \widehat{mAB}

If two chords are congruent, then they are equidistant from the center.

In \bigcirc K, K is the midpoint of RE. If TY = -3x + 56 and US = 4x, find the length of TY.

If a diameter is perpendicular to a chord, then it also bisects the chord.

This results in congruent arcs too.

Sometimes, this creates a right triangle & you'll use Pythagorean Theorem.

IN \bigcirc Q, $\widehat{KL} \cong \widehat{LZ}$. If CK = 2x + 3 and CZ = 4x, find x.

In \odot P, if PM \perp AT, PT = 10, and PM = 8, find AT.

Segment Lengths in Circles

Go down the chord and multiply

Solve for x.

Find the length of DB.

Find the length of AC and DB.

