Good morning! - 1. "Here" - 2. Notes on Characteristics of Linear Functions - 4. Upload Practice to CTLS DeltaMath Unit 1 - Part 2 Linear Functions | Monday | ay Tuesday Wednesday Thursday | | Thursday | Friday | | |--|---|-------------------------|--|---|--| | Jan. 18 th | Jan. 19 th | Jan. 20 th | Jan. 21 st | Jan. 22 nd | | | No School | Unit 1 Part 1
Test | Unit 1 Part 1
Test | Graphing Linear
Functions | Characteristics
of Linear
Functions | | | Jan. 25 th | Jan. 26 th | Jan. 27 th | Jan. 28 th | Jan. 29 th | | | Function Notation | PSAT Day – No
Class | Arithmetic
Sequences | Review
Quiz due at
midnight | Solving Systems
by Graphing | | | Feb. 1st | Feb. 2nd | Feb. 3rd | Feb. 4th | Feb. 5 th | | | Solving Systems
by Substitution | Solving Systems
by Elimination
Quiz | Quiz due at
midnight | Systems of
Equations Word
Problems | Graphing
Systems of
Inequalities | | | Feb. 8th | Feb. 9th | Feb. 10th | Feb. 11th | Feb. 12th | | | Graphing
Systems of
Inequalities | Review
Test | Test due at
midnight | Factoring by GCF | Factoring | | #### Characteristics of Linear Functions # **Domain and Range** | Domain \sim | | | | | | |--------------------------|----------------------------|----------------------------|--|--|--| | Define: | Think: | Write:
X: alred numbers | | | | | All possible values of x | How far left to right does | | | | | | | the graph go? | At sent Cod Mot pol 1 | | | | | | Range 🗥 | 4 | | | | | Define: | Think: | Write: | | | | | All possible values of y | How far down to how far | Write: | | | | | | up does the graph go? | (100.00) | | | | Domain: all reals Range: all reals Range: - - < y < > Domain: all reals Range: y = 1 Domain: x = 3 Range: all reals nall real number" Inequality notation R Monion -002x200 Interval notation (-00,00) X-intercepts: Y-intercept: none (01) X-intercepts: (3,0) Y-intercept: none #### **End Behavior** #### **End Behavior** #### Define: Behavior of the ends of the function (what happens to the y-values or f(x)) as x approaches positive or negative infinity. The arrows indicate the function goes on forever so we want to know where those ends go. Think: As x goes to the left (negative infinity), what direction does the left arrow go? #### Think: As x goes to the right (positive infinity), what direction does the right arrow go? | رح | , Ft | Write: | |----|------|--------| | | 2. | | Jour ut Write: As $x \to -\infty$, $f(x) \to \underline{-\infty}$. As $x \to \infty$, $f(x) \to \underline{\infty}$. $As \ x \to -\infty, f(x) \to \underline{\hspace{1cm}}.$ $As \ x \to \infty, f(x) \to \underline{\hspace{1cm}}.$ # Define: Rate of change or <u>slope</u> for a given interval on a graph # **Average Rate of Change** Think: How is the graph changing over the given interval? ### Write: 1= Ay = 42-41 Calculate the average rate of change for the interval $-3 \le x \le 3$. $m = \frac{1-2}{1-2} = \frac{1-3}{1-3} = \frac{1}{3} \frac{$ Calculate the average rate of change for the interval $-5 \le x \le 0$. [-5, 4] A horizontal line has a slope of A vertical line has a slope of undefined Calculate the average rate of change for the function f(x) = 3x for the interval $1 \le x \le 3$. Characteristics of Linear Functions Practice 3) Domain: _____ Range: _____ X-Intercept: _____ Y-Intercept: ___ Increasing: _____ Decreasing: _____ Constant: _____ Slope: _____ As $x \to -\infty$, $f(x) \to ____.$ As $x \to \infty$, $f(x) \to$ ____. Equation: _____ Range: _____ X-Intercept: _____ Y-Intercept: _____ Increasing: _____ Decreasing: _____ Constant: _____ Slope: _____ As $x \rightarrow -\infty$, $f(x) \rightarrow$ _____. As $x \to \infty$, $f(x) \to$ _____. Equation: _____ #### 5) Domain: _____ Range: _____ X-Intercept: _____ Y-Intercept: _____ Increasing: _____ Decreasing: _____ Constant: _____ Slope: _____ As $x \to -\infty$, $f(x) \to$ _____. As $x \to \infty$, $f(x) \to ____.$ Equation: _____ | ۸۱ | Graph v | = 2x - 2 | and identify | / the | charac | teristics | |----|---------|---------------|--------------|--------|--------|-----------| | O, | Glupiiy | $-2\lambda-2$ | and lacinii | y IIIC | CHARAC | | Domain: _____ Range: _____ X-Intercept: _____ Y-Intercept: _____ Increasing: _____ Decreasing: _____ Constant: _____ As $$x \to -\infty$$, $f(x) \to$ _____. As $x \to \infty$, $f(x) \to$ ____. #### 7) Graph f(x) = 3x - 6 and identify the characteristics. Domain: _____ Range: ____ X-Intercept: _____ Y-Intercept: _____ Increasing: _____ Decreasing: _____ Constant: _____ As $x \to -\infty$, $f(x) \to$ _____. As $x \to \infty$, $f(x) \to$ ____. # 8) Graph f(x) = -x + 2 and identify the characteristics Domain: _____ Range: ___ X-Intercept: _____ Y-Intercept: _____ Increasing: ___ Decreasing: _____ Constant: ____ As $x \rightarrow -\infty$, $f(x) \rightarrow$ _____. As $x \to \infty$, $f(x) \to$ ____. 9) Graph $y = -\frac{3}{4}x$ and identify the characteristics. Domain: _____ Range: _____ X-Intercept: _____ Y-Intercept: Increasing: Decreasing: Constant: _____ $As x \rightarrow -\infty, f(x) \rightarrow \underline{\hspace{1cm}}$ As $x \to \infty$, $f(x) \to$ ____. 10) Graph $f(x) = -\frac{1}{2}x + 4$ and identify the characteristics. Domain: _____ Range: _____ X-Intercept: _____ Y-Intercept: _____ Increasing: _____ Decreasing: _____ Constant: _____ As $x \to -\infty$, $f(x) \to$ ____. As $x \to \infty$, $f(x) \to$ _____. 8) Graph $f(x) = \frac{3}{2}x - 5$ and identify the characteristics. Domain: _____ Range: _____ X-Intercept: _____ Y-Intercept: _____ Increasing: _____ Decreasing: _____ Constant: _____ As $x \to -\infty$, $f(x) \to$ ____. , , , , _ As $x \to \infty$, $f(x) \to ____.$