Good morning!

- 1. "Here"
- 2. Notes on Characteristics of Linear Functions
- 4. Upload Practice to CTLS

DeltaMath

Unit 1 - Part 2 Linear Functions

Monday	ay Tuesday Wednesday Thursday		Thursday	Friday	
Jan. 18 th	Jan. 19 th	Jan. 20 th	Jan. 21 st	Jan. 22 nd	
No School	Unit 1 Part 1 Test	Unit 1 Part 1 Test	Graphing Linear Functions	Characteristics of Linear Functions	
Jan. 25 th	Jan. 26 th	Jan. 27 th	Jan. 28 th	Jan. 29 th	
Function Notation	PSAT Day – No Class	Arithmetic Sequences	Review Quiz due at midnight	Solving Systems by Graphing	
Feb. 1st	Feb. 2nd	Feb. 3rd	Feb. 4th	Feb. 5 th	
Solving Systems by Substitution	Solving Systems by Elimination Quiz	Quiz due at midnight	Systems of Equations Word Problems	Graphing Systems of Inequalities	
Feb. 8th	Feb. 9th	Feb. 10th	Feb. 11th	Feb. 12th	
Graphing Systems of Inequalities	Review Test	Test due at midnight	Factoring by GCF	Factoring	

Characteristics of Linear Functions

Domain and Range

Domain \sim					
Define:	Think:	Write: X: alred numbers			
All possible values of x	How far left to right does				
	the graph go?	At sent Cod Mot pol 1			
	Range 🗥	4			
Define:	Think:	Write:			
All possible values of y	How far down to how far	Write:			
	up does the graph go?	(100.00)			

Domain: all reals

Range: all reals

Range: - - < y < >

Domain: all reals

Range: y = 1

Domain: x = 3

Range: all reals

nall real number" Inequality notation R

Monion -002x200 Interval notation (-00,00)

X-intercepts:

Y-intercept:

none

(01)

X-intercepts:

(3,0)

Y-intercept:

none

End Behavior

End Behavior

Define:

Behavior of the ends of the function (what happens to the y-values or f(x)) as x approaches positive or negative infinity. The arrows indicate the function goes on forever so we want to know where those ends go.

Think:

As x goes to the left (negative infinity), what direction does the left arrow go?

Think:

As x goes to the right (positive infinity), what direction does the right arrow go?

رح	, Ft	Write:
	2.	

Jour ut

Write:

As $x \to -\infty$, $f(x) \to \underline{-\infty}$.

As $x \to \infty$, $f(x) \to \underline{\infty}$.

 $As \ x \to -\infty, f(x) \to \underline{\hspace{1cm}}.$ $As \ x \to \infty, f(x) \to \underline{\hspace{1cm}}.$

Define:

Rate of change or <u>slope</u> for a given interval on a graph

Average Rate of Change

Think:

How is the graph changing over the given interval?

Write:

1= Ay = 42-41

Calculate the average rate of change

for the interval $-3 \le x \le 3$.

 $m = \frac{1-2}{1-2} = \frac{1-3}{1-3} = \frac{1}{3} = \frac{$

Calculate the average rate of change

for the interval $-5 \le x \le 0$.

[-5, 4]

A horizontal line has a slope of

A vertical line has a slope of undefined

Calculate the average rate of change for the function f(x) = 3x for the interval $1 \le x \le 3$.

Characteristics of Linear Functions Practice

3) Domain: _____

Range: _____

X-Intercept: _____

Y-Intercept: ___

Increasing: _____

Decreasing: _____

Constant: _____

Slope: _____

As $x \to -\infty$, $f(x) \to ____.$

As $x \to \infty$, $f(x) \to$ ____.

Equation: _____

Range: _____

X-Intercept: _____

Y-Intercept: _____

Increasing: _____

Decreasing: _____

Constant: _____

Slope: _____

As $x \rightarrow -\infty$, $f(x) \rightarrow$ _____.

As $x \to \infty$, $f(x) \to$ _____.

Equation: _____

5) Domain: _____

Range: _____

X-Intercept: _____

Y-Intercept: _____

Increasing: _____ Decreasing: _____

Constant: _____

Slope: _____

As $x \to -\infty$, $f(x) \to$ _____.

As $x \to \infty$, $f(x) \to ____.$

Equation: _____

۸۱	Graph v	= 2x - 2	and identify	/ the	charac	teristics
O,	Glupiiy	$-2\lambda-2$	and lacinii	y IIIC	CHARAC	

Domain: _____

Range: _____

X-Intercept: _____

Y-Intercept: _____

Increasing: _____

Decreasing: _____

Constant: _____

As
$$x \to -\infty$$
, $f(x) \to$ _____.

As $x \to \infty$, $f(x) \to$ ____.

7) Graph f(x) = 3x - 6 and identify the characteristics.

Domain: _____

Range: ____

X-Intercept: _____

Y-Intercept: _____

Increasing: _____

Decreasing: _____

Constant: _____

As $x \to -\infty$, $f(x) \to$ _____.

As $x \to \infty$, $f(x) \to$ ____.

8) Graph f(x) = -x + 2 and identify the characteristics

Domain: _____

Range: ___

X-Intercept: _____

Y-Intercept: _____

Increasing: ___

Decreasing: _____

Constant: ____

As $x \rightarrow -\infty$, $f(x) \rightarrow$ _____.

As $x \to \infty$, $f(x) \to$ ____.

9) Graph $y = -\frac{3}{4}x$ and identify the characteristics.

Domain: _____

Range: _____

X-Intercept: _____

Y-Intercept:

Increasing:

Decreasing:

Constant: _____

 $As x \rightarrow -\infty, f(x) \rightarrow \underline{\hspace{1cm}}$

As $x \to \infty$, $f(x) \to$ ____.

10) Graph $f(x) = -\frac{1}{2}x + 4$ and identify the characteristics.

Domain: _____

Range: _____

X-Intercept: _____

Y-Intercept: _____

Increasing: _____

Decreasing: _____

Constant: _____

As $x \to -\infty$, $f(x) \to$ ____.

As $x \to \infty$, $f(x) \to$ _____.

8) Graph $f(x) = \frac{3}{2}x - 5$ and identify the characteristics.

Domain: _____

Range: _____

X-Intercept: _____

Y-Intercept: _____

Increasing: _____

Decreasing: _____

Constant: _____

As $x \to -\infty$, $f(x) \to$ ____.

, , , , _

As $x \to \infty$, $f(x) \to ____.$

